• Title/Summary/Keyword: propulsion module

Search Result 81, Processing Time 0.023 seconds

Development of Supply System Module for Liquid Rocket Engine (액체로켓엔진 공급시스템 모듈 개발)

  • Kim, Hye-Min;Lee, Sang-Bok;Kim, Wan-Jo;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.79-84
    • /
    • 2010
  • The supply system module of the liquid rocket engine has been developed, which consists of the various supply system components such as pipes, orifices, elbows, bellows, valves and flanges. This module can size the components and calculate pressure drops between them. For the assembly of the supply system components, the supply system module can evaluate the number of the components, total pressure drop, outlet pressure and total system weight.

  • PDF

Structural Analysis of Satellite Propulsion System Module Bracket (인공위성 추진시스템 모듈 브라켓의 구조해석)

  • Lee, Gyun Ho;Kim, Jeong Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • Propulsion system of the current developing satellite is roughly composed of propellant tank and four major modules. Each module prevides the pulse momentum for spacecraft attitude control, filling/draining of propellant and pressurant, propellant filtering, and the change of flow passage in the spacecraft emergency situation, respectively. These modules will be fixed on the propulsion platform with their suitable mounting brackers, so the brackets shall be designed sufficiently to support a function of the modules under launch environment and on-orbit condition. The purpose of this article is to check if all the bracket designs satisfy the defined structural requirements through finite element analysis, and then to verify structural safety.

A Thermo chemical Study of Arcjet Thruster Flow Field

  • J-R. Shin;S. Oh;Park, J-Y
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.257-261
    • /
    • 2004
  • Computational fluid dynamics analysis was carried out for thermo-chemical flow field in Arcjet thruster with mono-propellant Hydrazine ($N_2$H$_4$) as a working fluid. The theoretical formulation is based on the Reynolds Averaged Navier-Stokes equations for compressible flows with thermal radiation. The electric potential field governed by Maxwell equation is loosely coupled with the fluid dynamics equations through the Ohm heating and Lorentz force. Chemical reactions were assumed being infinitely fast due to the high temperature field inside the arcjet thruster. An equilibrium chemistry module for nitrogen-hydrogen mixture and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. Thermo-physical process inside the arcjet thruster was understood from the flow field results and the performance prediction shows that the thrust force is increased by amount of 3 times with 0.6KW arc heating.

  • PDF

Design and Reliability Analysis of the Through-Bulkhead Initiation Module Using CH-6 (CH-6를 적용한 격벽 착화모듈 설계 및 신뢰도 분석)

  • Jang, Seung-Gyo;Cha, Hong-Seok;Kang, Won-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.327-330
    • /
    • 2009
  • A Through-Bulkhead Initiation Module(TBIM) using CH-6 was designed. The TBIM works as the shock-wave generated by a donor charge transmits to the acceptor charge. The structural safety of TBIM housing was calculated via modeling analysis, and the ignition characteristic was proved by 10 cc closed bomb test(CBT). The reliability analysis was made using Probit method on the basis of CBT results. The optimal bulkhead thickness of TBIM which is the most important design parameter was determined using reliability analysis.

  • PDF

Liquid Oxygen Filling System of Propulsion System Test Complex(PSTC) for KSLV-II (한국형발사체 추진기관시스템 시험설비(PSTC) 산화제 공급 시스템)

  • Lee, Janghwan;Choi, Bongsu;Kim, Yongwook;Cho, Kiejoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1184-1187
    • /
    • 2017
  • The space launch vehicle needs the verification of each stage's propulsion system. The Propulsion System Test Complex(PSTC) is constructed for developing KSLV-II in the Naro space center. Hydraulic and pneumatic system of PSTC should supply propellants and various gases to propulsion system module according to required condition. This paper introduces liquid oxygen filling system of PSTC.

  • PDF

Development and Revenue Service of Propulsion System Using IPM (IPM 소자를 사용한 추진제어장치 개발 및 상용화)

  • LEE K.K.;KIM D.M.;KWON I.D.
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.671-675
    • /
    • 2005
  • In this paper, Development of propulsion system using IPM(Intelligent Power Module) for DC electric vehicle is proposed. Designed propulsion system is comprised of inverter stack which includes 6 IPM, BCH(Breaking Chopper) unit, FC(Filter Capacitor), Control unit. IPM can compose propulsion system simple by including gate drive circuit and protection circuit. Inverter stack is designed as a simple structure using IPM and non clamp capacitor. VVVF Inverter control is used the vector control strategy at low velocity region and slip frequency-control strategy at high velocity region. Designed propulsion system proves the performance through test and revenue service.

  • PDF

Development of an Integrated Design System for Solid Rocket Motors (고체 추진기관 통합 설계 시스템 개발)

  • Lee, Kang-Soo;Kim, Won-Hoon;Hwang, Tae-Kyung;Bae, Joo-Chan;Yang, June-Seo;Lee, Do-Hyeong;Seok, Jung-Ho;Choi, Byeong-Wook;Kwon, Hyuk-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.207-210
    • /
    • 2008
  • We developed an integrated design system for a solid rocket motors. We can do a conceptual design of a solid rocket motor easily and quickly with this system. It consists of four modules, or, size design, structure design, grain design and performance analysis module. Size design module determines the lengths and diameters of some major parts, which results in fixing the whole size of a motor. Structure design module has many master models, which enables a designer can do a conceptual design of almost parts of motor structures. Grain design module can design a solid fuel according to the result of structure design. Finally performance analysis module verifies the proposed design with the output from grain design module.

  • PDF

A Development of Maintenance Decision Support System for Gas Turbine Engine (가스터빈 엔진 정비 의사결정 지원시스템 개발)

  • Ki, Ja-Young;Kang, Myoung-Cheol;Lee, Myung-Kuk;Rho, Hong-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.586-591
    • /
    • 2012
  • The solution of maintenance decision support system for the gas turbine engine, which is currently operating in GUNSAN combined cycle power plant, was developed and is consist of online monitoring module, periodic performance trending module, optimal compressor washing interval analysis module and hot component management module. Also, GUI platform was applied to this solution for the user to monitoring the analyzed result of engine performance condition and then to make a decision of the consequent maintenance action. In online condition monitoring module, the performance degradation of engine is provided by the analysis of difference between the real time measurement data compared to exist engine performance. The optimal compressor washing interval module produced the washing interval of maximum net profit value by researching the maintenance expense and the loss profit value corresponds to the performance degradation with economic assessment algorithm. Thus, this solution support the user to enable the optimal maintenance and operation of gas turbine engine with overall analysis of engine condition and main information.

  • PDF

Considerations on Improvement of Moving Properties for Magnetic Actuator Capable of Movement in Pipe

  • Izumikawa, Tomohiro;Yaguchi, Hiroyuki
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.263-267
    • /
    • 2011
  • The present paper proposes a novel cableless magnetic actuator with a new propulsion module that exhibits a very high thrusting force. This actuator contains an electrical inverter that directly transforms DC from button batteries into AC. The electrical DC-AC inverter incorporates a mass-spring system, a reed switch, and a curved permanent magnet that switches under an electromagnetic force. The actuator is moved by the inertial force of the mass-spring system due to mechanical resonance energy. The experimental results show that the actuator is able to move upward at a speed of 33 mm/s when using 10 button batteries when pulling a 10 g load mass. This cableless magnetic actuator has several possible applications, including narrow-pipe inspection and maintenance.

Knowledge-Based System for Optimum Propulsion Engine Selection of Ships (최적 박용엔진 선정을 위한 지식기반시스템)

  • Lee, Dong-Kon;Lee, Kyung-Ho;Lee, Kyu-Yeul;Lee, Chang-Euk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.3-10
    • /
    • 1993
  • The main propulsion system may be the most complicated of the shipboard systems. Many factors such as fuel economy, weight, space, first cost, reliability, vibration and noise must be considered when selecting the prime mover of the main propulsion system for ships. An expert system is a computer program that represents and reasons with knowledge of some specialist subject with a view to solving problems or giving advice. Recently, it is being developed increasingly with wider applications in many industries. This paper describes development of knowledge-based system for main engine selection of ships using general purpose expert system development tool, Nexpert Object. Developed system is consist of ship performance estimation module such as resistance and propulsion, data base for main engine, knowledge base for main engine selection in Nexpert Object and graphic user interface.

  • PDF