• Title/Summary/Keyword: proportional-integral-derivative controller

Search Result 172, Processing Time 0.024 seconds

Design and Analysis of a Control System for Variable-Rate Application of Granular Fertilizers (입제 비료 변량 살포 제어시스템의 분석 및 설계)

  • Kim Y.H.;Rhee J.Y.;Kim Y.J.;Yu J.H.;Ryu K.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.203-208
    • /
    • 2006
  • This study was conducted to improve the control performance of a current variable-rate controller for granular fertilizers. Simulation model was developed. Optimized proportional, integral and derivative gains were determined by simulation model using 2nd order PID gain learning algorithm, and these control gains were evaluated through the field tests. Important results of this study are as follows; 1. Principles of pre-existing variable-rate application of granular fertilizers were investigated. 2. Simulation model of a PID controller that could simulate the control system was developed by using Matlab/Simulink program. The program was to determine PID control coefficients through the simulation model and 2nd order PID gain learning algorithm. 3. PID control coefficients obtained from the simulation were applied to the developed model. When the step input was given, Maximum overshoot were 1.96%, rise time were 0.05 sec, settling time were 0.06 sec and steady state error were 0.21 % respectively. 4. The simulation model was verified through field tests. The errors of maximum overshoot were 10%, rise time were 0.11 sec, settling time were 0.40 sec and steady state error were 8% because of loads and noises. Rise time was decreased to one third of that of the pre-existing system. 5. If the speed of a fertilizing machine is $0.3{\sim}0.6\;m/s$ and the maximum rotation speed of a discharging roller is 64 rpm, rise time would be 0.26 sec and fertilizing machine would cover the distance of $0.07{\sim}0.15\;m$ with settling time of 0.4 sec, fertilizing machine would cover the distance of $0.12{\sim}0.24\;m$.

A Simulation Method of PID Tuning with Process Modeling in Operating Nuclear Power Plants (가동원전에서 공정모델링을 통한 PID 튜닝 시뮬레이션 방법)

  • Min, Moon-Gi;Jung, Chang-Gyu;Lee, Kwang-Hyun;Lee, Jae-Ki;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.290-294
    • /
    • 2014
  • PID(Proportional, Integral, Derivative) controller is the most popular process controllers in nuclear power plants. The optimized parameter setting of the process controller contributes to the stable operation and the efficiency of the operating nuclear power plants. PID parameter setting is tuned when new process control systems are installed or current process control systems are changed. When the nuclear plant is shut down, a lot of PID tuning methods such as the Trial and Error method, Ultimate Oscillation method operation, Ziegler-Nichols method, frequency method are used to tune the PID values. But inadequate PID parameter setting can be the cause of the unstable process of the operating nuclear power plant. Therefore the results of PID parameter setting should be simulated, optimized and finally verified. This paper introduces the simulation method of PID tuning to optimize the PID parameter setting and confirms them of the actual PID controller in the operating nuclear power plants. The simulation method provides the accurate process modeling and optimized PID parameter setting of the multi-loop control process in particular.

Optimum Controller Design of a Water Cooler for Machine Tools Based on the State Space Model (상태공간 모델링에 의한 공작기계용 수냉각기의 최적제어기 설계)

  • Jeong, Seok-Kwon;Kim, Sang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.782-790
    • /
    • 2011
  • Typical temperature control methods of a cooler for machine tools are hot-gas bypass and compressor variable speed control. The hot-gas bypass system has been widely used to control the cooler temperature in many general industrial fields. On the contrary, the compressor variable speed control is focused on special fields such as aerospace and high precision machine tools which need high precision control. The variable speed control system usually has two control variables such as target temperature and superheat. In other words, the variable speed control system is basically multi-input multi-output(MIMO) system. In spite of MIMO system, the proportional integral derivative(PID) feedback control methodology that based on single-input single-output (SISO) system is generally used for designing the variable speed control system. Therefore, it is inevitable to describe transfer functions for dynamic behaviors of every controlled variables and decide the PID gains with tremendous iteration process. Moreover, the designed PID gains do not provide optimum system performances. To solve these problems, high performance controller design method based on a state space model is suggested in this paper. An optimum controller is designed to minimize both control errors and energy inputs. This method was more simple to describe dynamic behaviors and easier to design the cooler controller which is MIMO system.

Modeling and Intelligent Control for Activated Sludge Process (활성슬러지 공정을 위한 모델링과 지능제어의 적용)

  • Cheon, Seong-pyo;Kim, Bongchul;Kim, Sungshin;Kim, Chang-Won;Kim, Sanghyun;Woo, Hae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1905-1919
    • /
    • 2000
  • The main motivation of this research is to develop an intelligent control strategy for Activated Sludge Process (ASP). ASP is a complex and nonlinear dynamic system because of the characteristic of wastewater, the change in influent flow rate, weather conditions, and etc. The mathematical model of ASP also includes uncertainties which are ignored or not considered by process engineer or controller designer. The ASP is generally controlled by a PID controller that consists of fixed proportional, integral, and derivative gain values. The PID gains are adjusted by the expert who has much experience in the ASP. The ASP model based on $Matlab^{(R)}5.3/Simulink^{(R)}3.0$ is developed in this paper. The performance of the model is tested by IWA(International Water Association) and COST(European Cooperation in the field of Scientific and Technical Research) data that include steady-state results during 14 days. The advantage of the developed model is that the user can easily modify or change the controller by the help of the graphical user interface. The ASP model as a typical nonlinear system can be used to simulate and test the proposed controller for an educational purpose. Various control methods are applied to the ASP model and the control results are compared to apply the proposed intelligent control strategy to a real ASP. Three control methods are designed and tested: conventional PID controller, fuzzy logic control approach to modify setpoints, and fuzzy-PID control method. The proposed setpoints changer based on the fuzzy logic shows a better performance and robustness under disturbances. The objective function can be defined and included in the proposed control strategy to improve the effluent water quality and to reduce the operating cost in a real ASP.

  • PDF

A Design of LORAN Disciplined Oscillator

  • Hwang, Sang-Wook;Choi, Yun Sub;Yeo, Sang-Rae;Park, Chansik;Yang, Sung-Hoon;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 2013
  • This article presents the design of long range navigation (LORAN)-disciplined oscillator (LDO), employing the timing information of the LORAN system, which was developed as a backup system that corrects the vulnerability of the global positioning system (GPS)-based timing information utilization. The LDO designed on the basis of hardware generates a timing source synchronized with reference to the timing information of the LORAN-C receiver. As for the LDO-based timing information measurement, the Kalman filter was applied to estimate the measurement of which variance was minimized so that the stability performance could be improved. The oven-controlled crystal oscillator (OCXO) was employed as the local oscillator of the LDO. The controller was operated by digital proportional-integral-derivative (PID) controlling method. The LDO performance evaluation environment that takes into account the additional secondary factor (ASF) of the LORAN signals allows for the relative ASF observation and data collection using the coordinated universal time (UTC). The collected observation data are used to analyze the effect of ASF on propagation delay. The LDO stability performance was presented by the results of the LDO frequency measurements from which the ASF was excluded.

Performance Enhancement of Motion Control Systems Through Friction Identification and Compensation (마찰력 식별과 보상을 통한 운동제어 시스템의 성능 개선)

  • Lee, Ho Seong;Jung, Sowon;Ryu, Seonghyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • This paper proposes a method for measuring friction forces and creating a friction model for a rotary motion control system as well as an autonomous vehicle testbed. The friction forces versus the velocity were measured, and the viscous friction, Coulomb friction, and stiction were identified. With a nominal PID (proportional-integral-derivative) controller, we observed the adverse effects due to friction, such as excessive steady-state errors, oscillations, and limit-cycles. By adding an adequate friction model as part of the augmented nonlinear dynamics of a plant, we were able to conduct a simulation study of a motion control system that well matched experimental results. We have observed that the implementation of a model-based friction compensator improves the overall performance of both motion control systems, i.e., the rotary motion control system and the Altino testbed for autonomous vehicle development. By utilizing a better simulation tool with an embedded friction model, we expect that the overall development time and cost can be reduced.

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

  • Yoo, Dong-Wan;Oh, Hyon-Dong;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • The design, dynamics, and control allocation of tri-rotor unmanned aerial vehicles (UAVs) are introduced in this paper. A trirotor UAV has three rotor axes that are equidistant from its center of gravity. Two designs of tri-rotor UAV are introduced in this paper. The single tri-rotor UAV has a servo-motor that is installed on one of the three rotors, which enables rapid control of its motion and its various attitude changes-unlike a quad-rotor UAV that depends only on the angular velocities of four rotors for control. The other design is called 'coaxial tri-rotor UAV,' which has two rotors installed on each rotor axis. Since the tri-rotor type of UAV has the yawing problem induced from an unpaired rotor's reaction torque, it is necessary to derive accurate dynamic and design control logic for both single and coaxial tri-rotors. For that reason, a control strategy is proposed for each type of tri-rotor, and nonlinear simulations of the altitude, Euler angle, and angular velocity responses are conducted by using a classical proportional-integral-derivative controller. Simulation results show that the proposed control strategies are appropriate for the control of single and coaxial tri-rotor UAVs.

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.