• Title/Summary/Keyword: proportional sampling method

Search Result 102, Processing Time 0.023 seconds

A composite estimator for stratified two stage cluster sampling

  • Lee, Sang Eun;Lee, Pu Reum;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • Stratified cluster sampling has been widely used for effective parameter estimations due to reductions in time and cost. The probability proportional to size (PPS) sampling method is used when the number of cluster element are significantly different. However, simple random sampling (SRS) is commonly used for simplicity if the number of cluster elements are almost the same. Also it is known that the ratio estimator produces a good performance when the total number of population elements is known. However, the two stage cluster estimator should be used if the total number of elements in population is neither known nor accurate. In this study we suggest a composite estimator by combining the ratio estimator and the two stage cluster estimator to obtain a better estimate under a certain population circumstance. Simulation studies are conducted to compare the superiority of the suggested estimator with two other estimators.

Mechanization of Pine Cone Harvest(II) -Shearing Characteristics of Shoots of Korean Pine Trees- (잣 수확의 기계화 연구(II) -잣나무 가지의 전단 특성-)

  • Kang, W.S.;Kim, S.H.;Lee, J.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 1994
  • This reasearch was performed to provide the fundamental intonation for the mechanization of Korean pine cone harvest when the shoot shearing method is adopted. Shear force and stress of pine cone shoots were measured and analyzed for this purpose. Samples are selected along their harvesting time and tested in 17 levels of shoot diameter from 10 to 26mm with 1mm increment. 1) Shear force-deformation characteristics showed that shoot reached its rupture point after 2 to 4 of bio-yield points. It was supposed that these multiple bio-yield points were caused by the discrete compression of wood parts which are composed of water, nutrient, resin, etc. 2) Required shear force to shear shoot was proportional to the square of shoot diamter, however, shear force for shoots of early harvesting time(Aug. 31) was proportional to the shoot diameter. Variance of shear force was increased as the harvesting time was delayed. Shear forces were distributed from 468N(Aug. 31, 12mm dia) to 4153N(Aug. 31, 26mm dia) disregarding the sampling date. 3) The average shear stresses by sampling dates were 744,822, and 883N/m2, respectively, and for the earlier shoot samples shear stress was quite smaller than the others. Shear stress was proportional to shoot diameter squared, and the effect of shoot diameter on the shear stress was decreased as harvesting time was delayed.

  • PDF

Sample Design for Materials and Components Industry Trend Survey (부품.소재산업 동향 조사의 표본설계)

  • NamKung, Pyong
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.883-897
    • /
    • 2008
  • This paper provides correct informations inflecting the present situation using the sample design in population that the National Statistical Office puts in operation of the mining and manufacturing industry statistical survey in 2006. This paper proposes new sampling design which is able to grasp business fluctuations and provide basic data for the rearing policy and management of the material industry and components industry. These sample design are the modified cut-off method and multivariate Neyman allocation using principal components and sampling method is the probability proportional systematic sampling.

A Prony Method Based on Discrete Fourier Transform for Estimation- of Oscillation Mode in Power Systems (이산푸리에변환에 기초한 Prony 법과 전력계통의 진동모드 추정)

  • Nam Hae-Kon;Shim Kwan-Shik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.293-305
    • /
    • 2005
  • This paper describes an improved Prony method in its speed, accuracy and reliability by efficiently determining the optimal sampling interval with use of DFT (discrete Fourier transformation). In the Prony method the computation time is dominated by the size of the linear prediction matrix, which is given by the number of data times the modeling order The size of the matrix in a general Prony method becomes large because of large number of data and so does the computation time. It is found that the Prony method produces satisfactory results when SNR is greater than three. The maximum sampling interval resulting minimum computation time is determined using the fact that the spectrum in DFT is inversely proportional to sampling interval. Also the process of computing the modes is made efficient by applying Hessenberg method to the companion matrix with complex shift and computing selectively only the dominant modes of interest. The proposed method is tested against the 2003 KEPCO system and found to be efficient and reliable. The proposed method may play a key role in monitoring in real time low frequency oscillations of power systems .

Stability Analysis of a Haptic System with a First-Order-Hold Method (일차 홀드 방식의 반력 구현 시스템에 대한 안정성 해석)

  • Lee, Kyungno
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.389-394
    • /
    • 2014
  • This paper presents the effect of a reflective force computed from a first-order-hold method on the stability of a haptic system. A haptic system is composed of a haptic device with a mass and a damper, a virtual spring, a sampler and a sample-and-hold. The boundary condition of the maximum virtual stiffness is analytically derived by using the Routh-Hurwitz criterion and the condition shows that the maximum virtual stiffness is proportional to the square root of the mass and the damper of a haptic device and also is inversely proportional to the sampling time to the power of three over two. The effectiveness of the derived condition is evaluated by the simulation. When the reflective forces are computed by using the first-order-hold method, the maximum available stiffness to guarantee the stability is increased several hundred times as large as when the zero-order-hold method is applied.

Effects of a First-order-hold Method and a Virtual Damper on the Stability Boundary of a Virtual Spring (일차홀드 방식과 가상 댐퍼가 가상 스프링의 안정성 영역에 미치는 영향)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.396-401
    • /
    • 2019
  • A virtual rigid is modeled as the parallel structure of a virtual spring and a virtual damper. The reflective force from the virtual model is designed to be as large as possible to improve the realism of the virtual environment while maintaining the stable interaction. So, it is important to analyze the stability boundary of the virtual spring and damper. In the previous researches, the stability boundary is analyzed based on the zero-order-hold (ZOH) method, but it is analyzed based on the first-order-hold (FOH) method and the virtual damper in the paper. The boundary value of the stable virtual damper is inverse proportional to the sampling time and the maximum value of stable virtual stiffness is inverse proportional to the square of the sampling time. And the maximum value in the FOH method is increased to 110% of the value in the ZOH method. If the virtual damper is smaller than about 50% of the boundary value of the virtual damper in the FOH method, the stable virtual stiffness in the FOH method is several times larger than that in the ZOH method.

Controling the Healthy Worker Effect in Occupational Epidemiology

  • Kim, Jin-Heum;Nam, Chung-Mo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.197-201
    • /
    • 2002
  • The healthy worker effect is an important issue in occupational epidemiology. We proposed a new statistical method to test the relationship between exposure and time to death in the presence of the healthy worker effect. In this study, we considered the healthy worker hire effect to operate as a confounder and the healthy worker survival effect to operate as a confounder and an intermediate variable. The basic idea of the proposed method reflects the length bias-sampling caused by changing one's employment status. Simulation studies were also carried out to compare the proposed method with the Cox proportional hazards models. According to our simulation studies, both the proposed test and the test based on the Cox model having the change of the employment status as a time-dependent covariate seem to be satisfactory at an upper 5% significance level. The Cox models, however, are inadequate with the change, if any, of the employment status as time-independent covariate. The proposed test is superior in power to the test based on the Cox model including the time-dependent employment status.

  • PDF

A Random Sampling Method in Estimating the Mean Areal Precipitation Using Kriging

  • Lee, Sang-Il
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.45-55
    • /
    • 1994
  • A new method to estimate the mean areal precipitation using kriging is developed. Urlike the conventional approach, points for double and quadruple numerical integrations in the kriging equation are selected randomly, given the boundary of area of interest. This feature eliminates the conventional approach's necessity of dividing the area into subareas and calculating the center of each subarea, which in turn makes the developed method more powerful in the case of complex boundaries. The algorithm to select random points within an arbitrary boundary, based on the theory of complex variables, is described. The results of Monte Carlo simulation showed that the error associated with estimation using randomly selected points is inversely proportional to the square root of the number of sampling points.

  • PDF

A study on the implementation simulation and system for 2-D doppler system using second-order sampling (2차 샘플링을 이용한 2-D 도플러 시스템의 시뮬레이션과 시스템구현에 관한 연구)

  • 임춘성;임용곤
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.147-156
    • /
    • 1990
  • A two-dimensional pulsed doppler system for ultrasonic blood velocity doppler signals is studied and implemented. The second-order sampling method and serial data processing procedures are utillized in the sys- tem, which eliminates the untuning problems at phase channels in the quadrature detection method as well as in the channels of parallel data processing. rho digital signal processor used in this system allows a hardware savings and flexible design options. The efficiency of the various mean frequency estimators in the second-order sampling system is examined by computer simulation as a function of the intersequence sample delay time. The temporal delay for the quadrature component is changed from $1/(4f_o){\;}to{\;}3/(4f_o){\;}and{\;}5/(4f_o)$ where to is the center frequency of the transducer, It is found that autocorrelator is the optimum frequency estimator for the second-order sampling: with !he intersequence sample delay of $1/(4f_o){\;}to{\;}3/(4f_o){\;}and{\;}5/(4f_o)$. The qualitative variation and information proportional to blood velocity in the vessel system are obtained in the VIVO experiments.

  • PDF

Bootstrap Confidence Intervals for an Adjusted Survivor Function under the Dependent Censoring Model

  • Lee, Seung-Yeoun;Sok, Yong-U
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.127-135
    • /
    • 2001
  • In this paper, we consider a simple method for testing the assumption of independent censoring on the basis of a Cox proportional hazards regression model with a time-dependent covariate. This method involves a two-stage sampling in which a random subset of censored observations is selected and followed-up until their true survival times are observed. Lee and Wolfe(1998) proposed an adjusted estimate of the survivor function for the dependent censoring under a proportional hazards alternative. This paper extends their result to obtain a bootstrap confidence interval for the adjusted survivor function under the dependent censoring. The proposed procedure is illustrated with an example of a clinical trial for lung cancer analysed in Lee and Wolfe(1998).

  • PDF