• Title/Summary/Keyword: properties prediction

Search Result 1,804, Processing Time 0.04 seconds

Prediction of Effective Material Properties for Triaxially Braided Textile Composite

  • Geleta, Tsinuel N.;Woo, Kyeongsik;Lee, Bongho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.222-235
    • /
    • 2017
  • In this study, finite element modeling was used to predict the material properties of tri-axially braided textile composite. The model was made based on an experimental test specimen which was also used to compare the final results. The full interlacing of tows was geometrically modelled, from which repeating parts that make up the whole braid called unit cells were identified based on the geometric and mechanical property periodicity. In order to simulate the repeating nature of the unit cell, periodic boundary conditions were applied. For validation of the method, a reference model was analyzed for which a very good agreement was obtained. Material property calculation was done by simulating uniaxial and pure shear tests on the unit cell. The comparison of these results with that of experimental test results showed an excellent agreement. Finally, parametric study on the effect of number of plies, stacking type (symmetric/anti-symmetric) and stacking phase shift was conducted.

Prediction for Rolling Force in Hot-rolling Mill Using On-line learning Neural Network (On-line 학습 신경회로망을 이용한 열간 압연하중 예측)

  • Son Joon-Sik;Lee Duk-Man;Kim Ill-Soo;Choi Seung-Gap
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • In the foe of global competition, the requirements for the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a mai or change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. In this paper, an on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

Prediction for Rolling Force in Hot-rolling Mill Using On-line loaming Neural Network (On-line 학습 신경회로망을 이용한 열간 압연하중 예측)

  • 손준식;이덕만;김일수;최승갑
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.124-129
    • /
    • 2003
  • In the face of global competitor the requirements flor the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a major change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models fir simulation and quantitative description of the industrial operations involved. In this paper, a on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

  • PDF

Application and Verification of Thermodynamics by using Cylindrical Asphalt Mixture Specimen (아스팔트 혼합물 실린더 시편을 이용한 열역학적 이론의 적용 및 검증)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.87-95
    • /
    • 2014
  • PURPOSES: Evaluation of thermal conductivity and convection properties of asphalt mixture by using thermodynamics. METHODS: In this research, temperature prediction model based on thermodynamics is derived for asphalt mixture in transient state and it is verified with laboratory test results. RESULTS: The derived temperature prediction model shows good agreement with laboratory test results. CONCLUSIONS: It is concluded that the derived model based on thermodynamics and thermal properties in the literature are good enough to capture temperature variation in laboratory test. The approach based on thermodynamics can be applied to more complex temperature simulations.

High Temperature Creep Life Prediction of Friction Welded Joints by Initial Strain Method and the AE Evaluation (ISM에 의한 마찰용접재(SUH3-SUH35)의 고온크리프 수명예측에 관한 연구)

  • 오세규;이원석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.40-48
    • /
    • 1997
  • There are many research results as individual uni-axial tension creep test of heat-resisting materials. However, there are very few about the study on the high temperature creep test for the Initial Strain Method, and especially any study on it about the friction welded joints of SUH3 to SUH35. One of the important concerns is a reliable method of evaluating static creep properties. No reliable method seems available at present to evaluate or predict static creep properties. So, the reliable method to evaluate and predict them by the ISM and AE techniques was made.

  • PDF

Moisture Migration of Concrete Members under High Temperature (고온조건에서 콘크리트 부재의 수분이동)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1530-1535
    • /
    • 2009
  • Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. The equilibrium properties of moisture are described by means of water vapor sorption isotherms, which illustrate the hysteretical behavior of materials. In this paper, the prediction method of the moisture distribution inside the high strength concrete members under the high temperature is presented. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member. And the moisture diffusivity model of high strength concrete by high temperature is proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test result of other researcher. The proposed algorithm shows a good agreement with the experimental results including the vaporization effect inside the concrete.

  • PDF

The prediction of Elastic Modulus of Recycled Aggregate Concrete (순환골재콘크리트의 탄성계수 추정에 관한 연구)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Yong-Jae;Kim, Hyun-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.105-108
    • /
    • 2005
  • This study investigated fundamental properties of the recycled aggregate which was produced through recent hi-techniques of recycling. In addition, the mechanical properties of the concrete that used the recycled aggregate were compared to the concrete used the natural aggregate. From the results of the mechanical property tests, as the recycled aggregate replacement ratio increased, the compressive strength and elastic modulus decreased. When the recycled aggregate completely replaced the natural aggregate, the compressive strength and elastic modulus was about 15$\%$ and 35$\%$ lower than the natural aggregate concrete, respectively. Based on the test results, equations for prediction of compressive strength and elastic modulus were suggested in the consideration of the amount of the replaced recycled aggregate. Based on the test results and study, the equation predicting the required development length of the recycled aggregate concrete is proposed.

  • PDF

Modeling of Indium Tin Oxide(ITO) Film Deposition Process using Neural Network (신경회로망을 이용한 ITO 박막 성장 공정의 모형화)

  • Min, Chul-Hong;Park, Sung-Jin;Yoon, Neung-Goo;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.741-746
    • /
    • 2009
  • Compare to conventional Indium Tin Oxide (ITO) film deposition methods, cesium assisted sputtering method has been shown superior electrical, mechanical, and optical film properties. However, it is not easy to use cesium assisted sputtering method since ITO film properties are very sensitive to Cesium assisted equipment condition but their mechanism is not yet clearly defined physically or mathematically. Therefore, to optimize deposited ITO film characteristics, development of accurate and reliable process model is essential. For this, in this work, we developed ITO film deposition process model using neural networks and design of experiment (DOE). Developed model prediction results are compared with conventional statistical regression model and developed neural process model has been shown superior prediction results on modeling of ITO film thickness, sheet resistance, and transmittance characteristics.

Prediction of residual mechanical behavior of heat-exposed LWAC short column: a NLFE model

  • Obaidat, Yasmeen T.;Haddad, Rami H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.265-280
    • /
    • 2016
  • A NLFE model was proposed to investigate the mechanical behavior of short columns, cast using plain or fibrous lightweight aggregate concrete (LWAC), and subjected to elevated temperatures of up to $700^{\circ}C$. The model was validated, before its predictions were extended to study the effect of other variables, not studied experimentally. The three-dimensional NLFE model was developed using ANSYS software and involved rational simulation of thermal mechanical behavior of plain and fibrous LWAC as well as longitudinal and lateral steel reinforcement. The prediction from the NLFE model of columns' mechanical behavior, as represented by the stress-strain diagram and its characteristics, compared well with the experimental results. The predictions of the proposed models, considering wide range of lateral reinforcement ratios, confirmed the behaviors observed experimentally and stipulated the importance of steel confinement in preserving post-heating mechanical properties of plain and fibrous LWAC columns, being subjected to high temperature.

Characteristics Evaluation and Useful Life Prediction of Rubber Spring for Railway Vehicle (전동차용 방진고무스프링 특성평가 및 사용수명 예측)

  • Woo, Chang-Su;Park, Dong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.104-111
    • /
    • 2006
  • The non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by material tests which are uni-axial tension and bi-axial tension. The computer simulation using the nonlinear element analysis program executed to predict and evaluate the load capacity and stiffness for chevron spring. In order to investigate the heat-aging effects on the rubber material properties, the acceleration test were carried out. Compression set results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the compression set test, several useful life prediction for rubber material were proposed.

  • PDF