• Title/Summary/Keyword: properties prediction

Search Result 1,805, Processing Time 0.026 seconds

Heat Treatment Process Design of CrMoSC1 Steel by Prediction of Phase Transformation and Thermal Stress Analysis (상변태 예측 및 열응력 해석에 의한 CrMoSC1 강의 열처리 공정 설계)

  • Choi, B.H.;Kwak, S.Y.;Kim, J.T.;Choi, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.4
    • /
    • pp.247-255
    • /
    • 2005
  • Although heat treatment is a process of great technological importance in order to obtain desired mechanical properties such as hardness, the process was required a tedious and expensive experimentation to specify the process parameters. Consequently, the availability of reliable and efficient numerical simulation program would enable easy specification of process parameters to achieve desired microstructure and mechanical properties without defects like crack and distortion. In present work, the developed numerical simulation program could predict distributions of microstructure and thermal stress in steels under different cooling conditions. The computer program is based on the finite difference method for temperature analysis and microstructural changes and the finite element method for thermal stress analysis. Multi-phase decomposition model was used for description of diffusional austenite decompositions in low alloy steels during cooling after austenitization. The model predicts the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimates the amount of martensite also by using Koistinen and Marburger equation. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

Measurement and Prediction of Autoignition Temperature (AIT) and Ignition Delay Time of n-Pentanol and p-Xylene Mixture (n-Pentanol p-Xylene 과 혼합물의 최소자연발화온도와 발화지연시간의 측정 및 예측)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2017
  • The fire and explosion properties of combustible materials are necessary for the safe handling, storage, transportation and disposal. Typical combustion characteristics for process safety include auto ignition temperature(AIT). The AIT is an important index for the safe handling of combustible liquids. The AIT is the lowest temperature at which the material will spontaneously ignite. In this study, the AITs and ignition delay times of n-pentanol and p-xylene mixture were measured by using ASTM E659 apparatus. The AITs of n-pentanol and p-xylene which constituted binary system were $285^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs and ignition delay times of n-pentanol and p-xylene mixture were a good agreement with the calculated AITs and ignition delay times by the proposed equations with a few A.A.D. (average absolute deviation). Therefore, it is possible to estimate the AITs and ignition delay times in other compositions of n-pentanol and p-xylene mixture by using the predictive equations which presented in this study.

Statistical Analysis of Paddy Water Properties and Variational Factors on Chl-a in Rice Paddy Field (벼 재배지 논물의 수질특성과 Chl-a 변동 요인의 통계적 분석)

  • Bae, Hui Su;Jang, Hyeonsoo;Hwang, Jaebok;Ahn, Seung Hyeon;Youn, Jong Tak;Kim, Uk Han;Bae, Beomsoo
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.935-942
    • /
    • 2019
  • Statistical analysis was carried out to identify the influence on environmental factors between paddy water chemical properties and Chl-a concentration (algae biomass index) using water samples collected in June for 3 years at rice paddy field. As a result of correlation analysis, there was a significantly negative relationships in DO(-0.366) and pH(-0.141). In contrast, significantly positive relationships were founded in COD(+0.431) and TOC(+0.422). According to the result of factor analysis, 3 factors were obtained and indicated that PC1 were Ca, K, Mg cation, PC2 were TOC, T-P, $PO{_4}^{3-}-P$ and DO, and PC3 were T-N and $NH_4{^+}-N$. As a result of linear regression analysis to develop a prediction model for chl-a concentration, the total amount of explanation was 20.6%, PC2 had the greatest influence on the increase of chl-a concentration and PC1 also showed a positive correlation but the PC3 has a negative correlation. In conclusion, carbon and phosporous content are the main factors for the increase algae blooms of rice paddy.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Analysis of Optical Properties of Organic Carbon for Real-time Monitoring (유기탄소 실시간 모니터링을 위한 분광학적 특성인자 분석)

  • You, Youngmin;Park, Jongkwan;Lee, Byungjoon;Lee, Sungyun
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.344-354
    • /
    • 2021
  • Optical methods such as UV and fluorescence spectrophotometers can be applied not only in the qualitative analysis of dissolved organic matter (DOM), but also in real-time quantitative DOM monitoring for wastewater and natural water. In this study, we measure the UV254 and fluorescence excitation emission spectra for a sewage treatment plant influent and effluent, and river water before and after sewage effluent flows into the river to examine the composition and origin of DOM. In addition, a correlation analysis between quantified DOM characteristics and dissolved organic carbon (DOC) was conducted. Based on the fluorescence excitation emission spectra analysis, it was confirmed that the protein-type tryptophan-like DOM was the dominant substance in the influent, and that the organic matter exhibited relatively more humic properties after biological treatment. However, DOM in river water showed the fluorescence characteristics of terrestrial humic-like and algal tyrosine-like (protein-like) organic matter. In addition, a correlation analysis was conducted between the DOC and optical indices such as UV254, the fluorescence intensity of protein-like and humic-like organic matter, then DOC prediction models were suggested for wastewater and river monitoring during non-rainfall and rainfall events. This study provides basic information that can improve the understanding of the contribution of DOC concentration by DOM components, and can be used for organic carbon concentration management in wastewater and natural water.

Suggestion of the Prediction Model for Material Properties and Creep of 60~80MPa Grade High Strength Concrete (설계기준강도 60~80MPa급 고강도콘크리트의 재료 특성 및 크리프 예측모델식 제안)

  • Moon, Hyung-Jae;Koo, Kyung-Mo;Kim, Hong-Seop;Seok, Won-Kyun;Lee, Byeong-Goo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2018
  • The construction of super tall building which structure is RC and must be certainly considered on column shortening estimation and construction reflected concrete creep has been increased. Regarding the Fck 60~80MPa grade high strength concrete applied in the domestic super tall building project, the mechanical properties and creep deflection according to curing conditions(Drying creep/Basic creep) were reviewed in this research. Results of compressive strength and elastic modulus under sealed curing condition were 5% higher than unsealed condition and difference of results according to the curing condition was increased over time. Autogenous and drying shrinkage tendency showed adversely in the case of high strength concrete. Additionally, creep modulus under unseal curing condition was evaluated 2~3 times higher than sealed condition. Modified model of ACI-209 based on test result was applied to estimate long period shortening of vertical members(such as Core Wall/Mega Column) exactly, it is designed to modify and suggest the optimal creep model based on various data accumulated during construction, in the future.

Lumped System Analysis on the Lunar Surface Temperature Using the Bottom Conductive Heat Flux Model (달 표면온도 예측을 위한 집중계 해석방법과 하부 열유속 모델의 적용)

  • Kim, Taig Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.66-74
    • /
    • 2019
  • Instead of securing thermophysical properties throughout the entire lunar surface, a theoretical method to predict the lunar surface temperature accurately using improved Lumped System Model (LSM) was developed. Based on the recently published research, thermal mass per unit area at the top regolith layer is assumed uniform. The function of bottom conductive heat flux was introduced under the theoretical background. The LSM temperature prediction agrees well with the DLRE measurement except for dusk, dawn and high latitude region where the solar irradiation is weak. The relative large temperature discrepancy in such region is caused by the limit of the bottom conductive heat flux model. The surface temperature map of the moon generated by the LSM method is similar to the DLRE measurement except for the anomalous temperature zones where surface topography and thermophysical properties appear in highly uneven.

Effect of Various Partial Replacements of Cement with Blast Furnace Slag and Different Placing Times on Thermal Properties of Mass Concrete and Modeling Work (타설시간차에 의한 고로슬래그 미분말의 치환율별 매스콘크리트의 온도특성)

  • Kim, Jong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.207-215
    • /
    • 2019
  • The aim of the research is analyzing the simple adiabatic temperature rising properties and the heat of hydration based on different placing timing of the mass concrete depending on various replacing ratios of blast furnace slag to comparative analyze the thermal cracking index and cracking possibility. As a result from the experiment, a suggested adiabatic temperature rising equation based on various blast furnace slag replacing ratios can be provide favorable correlation with over 0.99 of $R^2$ value by applying the initial induction period. With this relationship, more accurate prediction of the amount of the hydration heat rising and heating timing, and it is known that there is an approximately $13.1^{\circ}C$ of gap between plain concrete without blast furnace slag and concrete with 80 % of replacing blast furnace slag. To control the setting time and heat rising gap, the mix designs between top and bottom concrete casts were changed 15 cases, and D, E, H, I, and L models of controlling the heat of hydration showed 41.23 to $46.88^{\circ}C$ of core temperature and 0.98 to 1.27 of thermal cracking index. Therefore the cracking possibility was 15 to 52 % of favorable results of possibly controlling both the cracking due to the internal and external retainment and concrete temperature at early age.

Prediction of Slope Failure Arc Using Multilayer Perceptron (다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측)

  • Ma, Jeehoon;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.39-52
    • /
    • 2022
  • Multilayer perceptron neural network was trained to determine the factor of safety and slip surface of the slope. Slope geometry is a simple slope based on Korean design standards, and the case of dry and existing groundwater levels are both considered, and the properties of the soil composing the slope are considered to be sandy soil including fine particles. When curating the data required for model training, slope stability analysis was performed in 42,000 cases using the limit equilibrium method. Steady-state seepage analysis of groundwater was also performed, and the results generated were applied to slope stability analysis. Results show that the multilayer perceptron model can predict the factor of safety and failure arc with high performance when the slope's physical properties data are input. A method for quantitative validation of the model performance is presented.

Development of Criteria for Predicting Delamination in Cabinet Walls of Household Refrigerators (냉장고 캐비닛 벽면에서 발생하는 박리현상 예측을 위한 평가 기준 개발에 관한 연구)

  • Park, Jin Seong;Kim, Sung Ik;Lee, Gun Yup;Cho, Jong Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2022
  • Household refrigerator cabinets must undergo cyclic testing at -20 ℃ and 65 ℃ for quality control (QC) after their production is complete. These cabinets were assembled from different materials, including acrylonitrile butadiene styrene (ABS), polyurethane (PU) foam, and steel plates. However, different thermal expansion values could be observed owing to differences in the mechanical properties of the materials. In this study, a technique to predict delamination on a refrigerator wall caused by thermal deformation was developed. The mechanical properties of ABS and PU foams were tested, theload factors causing delamination were analyzed, delamination was observed using a high-speed camera, and comparison and verification in terms of stress and strain were performed using a finite element model (FEM). The results indicated that the delamination phenomenon of a refrigerator wall can be defined in two cases. A method for predicting and evaluating delamination was established and applied in an actual refrigerator. To determine the effect of temperature changes on the refrigerator, strain measurements were performed at the weak point and the stress was calculated. The results showed that the proposed FEM prediction technique can be used as a basis for virtual testing to replace future QC testing, thus saving time and cost.