• 제목/요약/키워드: propane cylinder

검색결과 31건 처리시간 0.024초

혼합 액체 프로판 표준가스 개발 (Development of Primary Reference Gas Mixtures for Liquid Propane)

  • 정윤성;김진석;배현길;강지환;이승호;김용두
    • 한국가스학회지
    • /
    • 제25권4호
    • /
    • pp.49-56
    • /
    • 2021
  • 액화석유가스(Liquefied Petroleum Gas)는 Propane(C3H8)과 Butane(C4H10)을 주성분으로 한 가스를 액화한 것으로 구분된다. LPG는 혼합 성분에 따라 품질의 차이가 커 성분 함량을 정확하게 측정하는 것이 중요하다. 이와 같은 물질은 혼합물의 성분별로 상온에서는 액체와 기체가 같이 공존해 정확한 측정이 까다롭다. 따라서 탄화수소의 성분별 농도의 측정 불확도가 높아 실제 함량 기준과 많은 차이가 발생하는 문제점을 안고 있다. 그러므로 탄화수소 물질의 조성과 정확한 농도 측정을 위해 혼합 액체 프로판 표준가스의 개발이 필요하였다. 혼합 액체 프로판 표준가스는 ISO-6142(2015)의 중량법으로 벨로즈형 정압실린더에 제조되었다. 제조한 4병의 표준가스에서 균질성이 GC-FID로 확인되었다. 제조 상대확장불확도는 0.01 % - 0.30 %, 균질성은 0.03 % - 0.25 %이었다. 이 혼합 액체 프로판 표준가스에서 중량법, 제조 일치성, 실린더 흡착 여부 및 장기 안정성에 대한 상대확장불확도는 0.26 % - 1.39 %(신뢰도 약 95 %, k=2)이내로 개발되었다.

균질혼합압축점화기관의 배기가스재순환 특성에 관한 연구 (A Study on Exhaust Gas Recirculation of Homogeneous Charge Compression Ignition Engine)

  • 한성빈;김성모
    • 에너지공학
    • /
    • 제18권3호
    • /
    • pp.163-168
    • /
    • 2009
  • 이 논문은 새로운 개념의 엔진으로 균질혼합압축점화기관(HCCI)에 대해서 이야기 하고 있다. HCCI 엔진은 디젤기관과 가솔린기관의 미래대체엔진으로 고려되고 있다. HCCI엔진은 부분부하에서 높은 지시열효율과 매우 낮은 질소산화물을 배출하는 잠재력 있는 엔진이다.이 논문의 목적은HCCI 엔진에서 의 배기가스재순환(EGR)의 효과를 분명히 하는데 있다. 이러한 연구목적을 위해서 4실린더 압축점화기관이 HCCI 기관으로 개조가 되었다.이 작업은 일정한 회전속도에서 프로판과 부탄의 연료를 사용하였다.

개조된 LPG엔진에서 Mixer와 LPi 연료공급방식의 엔진성능 및 배기특성 (Engine Performance and Emissions Characteristics in an LPG Engine Converted with Mixer and LPi System Fuel Supply Methods)

  • 최경호;김진호;조웅래;한성빈
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1075-1080
    • /
    • 2004
  • In this study, performance and emissions characteristics of an liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system fuel supply methods. A compression ratio for the base diesel engine, 21, was modified into 8, 8.5, 9 and 9.5. The cylinder head and the piston crown were modified to roe the LPG in the engine. Ignition timing was controlled to be at minimum spark advance for best torque (MBT) each case. Engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficiency, CO, THC and NOx. Experimental results showed that the LPi system generates higher power and lower emissions than the conventional mixer fuel supply method.

LPG엔진에서 수소첨가가 배기 성능과 열효율에 미치는 영향 [II] (Effects of Hydrogen-enriched LPG Fuelled Engine on Exhaust Emission and Thermal Efficiency [II])

  • 권태윤;김진호;최경호;정연종
    • 한국수소및신에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.297-303
    • /
    • 2002
  • The purpose of study is obtaining low-emission and high-efficiency in LPi engine with hydrogen enrichment. The test engine was named variable compression ratio single cylinder engine (VACRE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. A varied sensors such as crank shaft position sensor (CPS) and hall sensor supplies spark timing data to ignition controller. Displacement of VACRE is $1858.2cm^3$. VACRE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio($\lambda$) of this work was varied between 0,8 and 1.5.

평단봉대평판 전극배치에서 평판 전극에 화염이 존재할 때 공기의 섬락전압 특성 (Flashover Characteristics of Air in the Arrangement of Cylinder-Shaped Rod and Plane Electrode in Case of Flame on the Plane Electrode)

  • 김인식
    • 조명전기설비학회논문지
    • /
    • 제26권4호
    • /
    • pp.82-87
    • /
    • 2012
  • In this paper, flashover characteristics of air in the vertical arrangement of cylinder-shaped rod and plane gap in the case of combustion flame on the plane electrode were examined under the application of a.c. and d.c. high-voltages. In order to investigate the effect of propane flame on the flashover characteristics of air, flashover voltages in accordance with the variation of the gap length and the horizontal distance between the flame and the high-voltage rod electrode were measured. As the result of the experiment, flashover voltages in the presence of the flame were substantially lowered than those in the absence of flame, and the polarity effects with the d.c. voltages on appeared owing to the flame. Flashover voltages of air were increased in the proportion of the gap length and the horizontal distance in the case of both a.c. and d.c. voltages, but the flame was extinguished by such corona wind that was produced from the rod electrode when the gap length and the horizontal distance reached to a certain degree.

연소화염이 존재하는 봉대평판 갭에서 봉전극 형상에 따른 공기의 방전 특성 (Discharge Characteristics of Air according to the Shapes of Rod Electrode in the Rod-Plane Gap having Flame on the Plane Electrode)

  • 김인식
    • 조명전기설비학회논문지
    • /
    • 제27권8호
    • /
    • pp.83-89
    • /
    • 2013
  • In this paper, discharge characteristics of air in the vertical arrangement of three rods(dome-shaped, cylinder-shaped, and needle-shaped rod) and plane gap having propane flame on the plane electrode are examined under the application of a.c. and d.c. high-voltages. As the result of the experiment, flashover voltages in the presence of the flame are substantially lowered than those in the absence of flame, and relative a.c. flashover voltages in the dome-shaped, cylinder-shaped, and needle-shaped rod gaps are found 32.5%, 32.1%, and 26.4% respectively. The polarity effects with the d.c. voltages are shown, and flashover voltages in negative polarity are much lowered than those in positive one. The negative flashover voltages in the dome-shaped and cylinder-shaped gaps are found 18.3% and 18.7% respectively, but the positive ones are found 53.5% and 43.2% respectively. In the needle-shaped rod gaps, meanwhile, the flame is extinguished by corona wind, and the quenching voltages are found 28.4% under the application of a.c. voltages. The ion winds of corona and the reduction of air density are the main factors of flashover reduction owing to the flame in the case of a.c. voltages, but the electrifications of the positive ion by thermal ionization besides the above factors are remarkably found in the case of d.c. voltages.

균질혼합압축점화기관의 배출가스특성에 관한 연구 (A Study on the Emissions of Homogeneous Charge Compression Ignition Engine)

  • 한성빈;최경호
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.324-329
    • /
    • 2004
  • As a new concept in engines and a power source for future automotive applications, the HCCI(Homogeneous Charge Compression Ignition) engine has been introduced. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NO$_x$ and PM emissions as well as high efficiency under part load. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The main parameters for this research are fuel flow rate and the temperature of the intake manifold, and the effects of such on a HCCI engine's performance and exhaust was investigated.

Basic Performance Characteristics of HCCI (Homogeneous Charge Compression Ignition) Engine

  • Choi Gyeung Ho;Chung Yon Jong;Kim Ji Moon;Dibbler Robert W.;Han Sung Bin
    • 에너지공학
    • /
    • 제14권4호
    • /
    • pp.226-231
    • /
    • 2005
  • Essentially combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The purpose of this research is to show the effects of fuel flow rate and the temperature of the intake manifold on the performance and exhaust of an HCCI engine.

발전용 가스엔진의 개발 및 연소특성에 관한 연구 (A Study on the Development and the Combustion Characteristics of a Stationary Gas Engine)

  • 김현규;우석근;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.128-139
    • /
    • 2000
  • Environmental concerns and shortage of petroleum have promoted considerable interest in the use of alternate fuels in stationary diesel engine. In this study, a heavy-duty, intercooler-turbocharged 6-cylinder stationary diesel engine was converted into stationary gas engine fueled with propane or natural gas for the cogeneration plants. One of the most important factors in the combustion features of a stationary gas engine is the fuel composition and operating parameters in terms of compression ratio, spark advance, and engine loads. Experiments with different fuel gas and load conditions were carried out with combustion pressure analysis and NOx measurement. Combustion analysis based on P-$\theta$ diagrams was also investigated by means of combustion duration and cycle variation. Compression ratio is 10.0 and ignition timing is set by using the gasoline setting as a base line and advanced toward BTDC. The results show that fuel composition and spark advance have dominant effects on combustion and NOx characteristics at operating conditions.

  • PDF

순수 DME 및 DME 혼합연료의 직접분사식 디젤기관의 성능 및 배기가스 특성에 관한 연구 (A Study on Performance and Exhaust Emissions of DI Diesel Engine Operated with Neat DME and DME Blended Fuels)

  • 표영덕;김강출;이영재;김문헌
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.75-82
    • /
    • 2003
  • DME is a good alternative fuel to reduce the smoke remarkably when used in a diesel engine, while problems concerned with low lubricity and high compressibility exist. In the present study, single cylinder DI diesel engine was operated with neat DME and DME blended fuels which are DME-diesel blended fuel and DME-propane blended fuel. The results showed that the power of the neat DME and DME blended fuels was the same as that of pure diesel oil, and the specific energy consumption slightly increased. In addition, smoke emission was considerably reduced with the increase of DME content up to zero level, but NOx emission was slightly increased.