DOI QR코드

DOI QR Code

Development of Primary Reference Gas Mixtures for Liquid Propane

혼합 액체 프로판 표준가스 개발

  • Jeong, Yun-sung (Gas Metrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Jin-seog (Gas Metrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Bae, Hyun-kil (Gas Metrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Kang, Ji-hwan (Gas Metrology Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Lee, Seung-ho (Dept. of chemistry, Hannam University) ;
  • Kim, Yong-doo (Gas Metrology Group, Korea Research Institute of Standards and Science (KRISS))
  • 정윤성 (한국표준과학연구원 가스분석표준그룹) ;
  • 김진석 (한국표준과학연구원 가스분석표준그룹) ;
  • 배현길 (한국표준과학연구원 가스분석표준그룹) ;
  • 강지환 (한국표준과학연구원 가스분석표준그룹) ;
  • 이승호 (한남대학교 화학과) ;
  • 김용두 (한국표준과학연구원 가스분석표준그룹)
  • Received : 2021.08.09
  • Accepted : 2021.08.27
  • Published : 2021.08.31

Abstract

Liquefied Petroleum Gas is divided into liquefied gases containing propane (C3H8) and butane (C4H10). The quality of LPG varies greatly depending on the composition of the mixture, so it is important to measure the composition accurately. It is difficult to determine the composition of the mixture because liquid and gas coexist at room temperature. Therefore, the uncertainty in determining the concentration of hydrocarbons by component is high, and there are many problems that differ from the actual content standard. Therefore, it is necessary to develop a mixed liquid propane standard gas for the composition and accurate concentration of hydrocarbon substances. Mixed liquid propane standard gas is manufactured into bellows-type constant-pressure cylinders by ISO-6142 (2015). The homogeneity of the four standard gases manufactured was confirmed to be GC-FID. The manufacturer's uncertainty of expansion was 0.01 % to 0.30 % and homogeneity was 0.03 % to 0.25 %. In this mixed liquid propane standard gas, the relative expansion uncertainty of weight method, manufacturing consistency, cylinder adsorption and long-term stability was developed within 0.26 %-1.3 9% (95% of confidence level, k=2).

액화석유가스(Liquefied Petroleum Gas)는 Propane(C3H8)과 Butane(C4H10)을 주성분으로 한 가스를 액화한 것으로 구분된다. LPG는 혼합 성분에 따라 품질의 차이가 커 성분 함량을 정확하게 측정하는 것이 중요하다. 이와 같은 물질은 혼합물의 성분별로 상온에서는 액체와 기체가 같이 공존해 정확한 측정이 까다롭다. 따라서 탄화수소의 성분별 농도의 측정 불확도가 높아 실제 함량 기준과 많은 차이가 발생하는 문제점을 안고 있다. 그러므로 탄화수소 물질의 조성과 정확한 농도 측정을 위해 혼합 액체 프로판 표준가스의 개발이 필요하였다. 혼합 액체 프로판 표준가스는 ISO-6142(2015)의 중량법으로 벨로즈형 정압실린더에 제조되었다. 제조한 4병의 표준가스에서 균질성이 GC-FID로 확인되었다. 제조 상대확장불확도는 0.01 % - 0.30 %, 균질성은 0.03 % - 0.25 %이었다. 이 혼합 액체 프로판 표준가스에서 중량법, 제조 일치성, 실린더 흡착 여부 및 장기 안정성에 대한 상대확장불확도는 0.26 % - 1.39 %(신뢰도 약 95 %, k=2)이내로 개발되었다.

Keywords

Acknowledgement

본 연구는 국가과학기술연구회에 [화학·방사선 측정표준확립(GP2021-0003)] 사업의 연구비 지원으로 수행되었습니다.

References

  1. 공정거래위원회"가스산업 시장분석", 136-147, (2004)
  2. Shah, Yatish T. "Chemical Energy from Natural and Synthetic gas", CRC Press, 649, (2017)
  3. M.Havecker., S. Wrabetz., J. Krohnert., L.-I. Csepei., R. Naumann d'Alnoncourt., Y.V.Kolen'ko., F. Girgsdies., R. Schlogl., A.Trunschke "Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid", J. Catal. 285: 48-60, (2011) https://doi.org/10.1016/j.jcat.2011.09.012
  4. Raoul Naumann d'Alnoncourt, Lenard-Istvan Csepei, Michael Havecker, Frank Girgsdied, Manfred E.Schuster, Robert Schlogl, Annette Trunschke, "The reaction network in propane oxidation over phase-pure MoVTeNb M1 oxide catalysts", J. Catal. 311: 369-385, (2014) https://doi.org/10.1016/j.jcat.2013.12.008
  5. ISO 6142, "Gas analysis-preparation of calibration gas mixtures-weighing methods", (2015)
  6. ISO/IEC, Guide 98-3 "Uncertainty of measurement, guide to the expression of uncertainty in measurement", (2008)
  7. ASTM D 2163 - 91, "Standard Test Method for Analysis of Liquefied (LP) Gases and Propane Concentrates by Gas Chromatography", (1996)
  8. ISO19229, "Gas analysis - Purity analysis and the treatment of purity data", (2019)
  9. M.J.T. Milton., G.M. Vargha., A.S.Brown., "Gravimetric methods for the preparation of standard gas mixtures", Metrologia, 48, R1-R9, (2011) https://doi.org/10.1088/0026-1394/48/5/R01
  10. N. Matsumoto, T. Watanabe, M. Maruyama, Y. Horimoto, T. Maeda, K. Kato., "Development of massmeasurement equipment using an electronic mass comparator for gravimetric preparation of reference gas mixtures", Metrologia, 41, 178-188, (2004) https://doi.org/10.1088/0026-1394/41/3/011
  11. ISO6143,"Gas Analysis - comparison methods for determining and checking the composition of calibration gas mixtures", (2001)
  12. Heo, G. S., You, Y. M., Y. D., Kim, "evaluation of measurement uncertainties in analysis of trace sulfur compounds" Korean Journal of Odor Research and Engineering, 3(1), 31-40, (2004)
  13. KS M 2077, "액화석유가스의 탄화수소 성분 시험 방법", (1990)
  14. KS M 2150, "액화 석유 가스(LPG)", (2002)
  15. KS M 0019, "연료가스 및 천연가스의 분석시험 방법", (1987)
  16. M.J.T.Milton, F.Guenther, W.R.Miller, A.S.Brown., "Validation of the gravimetric values and uncertainties of independently prepared primary standard gas mixtures", Metrologia, 43, L7-L10, (2006) https://doi.org/10.1088/0026-1394/43/3/N01
  17. Joint Committe for Guides in Metrology. "Evaluation of Measurement Data-Guide to the Expression of Uncertainty in Measurement"; JCGM 100:2008 (GUM 1995 with minor corrections); Joint Committee for Guides in Metrology, (2008)