• Title/Summary/Keyword: propagation error

Search Result 1,011, Processing Time 0.025 seconds

The Phase Estimation Algorithm of Arrival Time Difference in MIMO Underwater Sensor Communication (MIMO 수중 통신에서 도착시간 차이에 따른 보상 알고리즘)

  • Baek, Chang-uk;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1531-1538
    • /
    • 2015
  • In this paper, we proposed receiver structure based on an iterative turbo equalization to cope with phase difference between two sensors in MIMO underwater communication channel. In a space-time coded system, it is often assumed that there are no phase errors among the multiple transmitter and receiver chains. In this paper, we have studied the effect of the phase errors between different transmit sensors and different propagation paths in the environment of MIMO underwater communication system, and have shown through BER performance by computer simulations that the bit-error-rate performance can be severely degraded. A decision-directed estimation and compensation algorithm has been proposed to minimize their effects on the system performance. In this paper, we investigate the phase differences and their effects on multiple-input and multiple-output systems, and propose a compensation algorithm for underwater channel model to minimize their effects.

Development of Estimation Model of Construction Activity Duration Using Neural Network Theory (건설공사 공정별 작업기간 산정을 위한 신경망 기반 모형 구축)

  • Cho, Bit-Na;Kim, Hyeon-Seung;Kang, Leen-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3477-3483
    • /
    • 2015
  • A reasonable process for the activity duration estimation is required for the successful construction management because it directly affects the entire construction duration and budget. However, the activity duration is being generally estimated by the experience of the construction manager. This study suggests an estimation model of construction activity duration using neural network theory. This model estimates the activity duration by considering both the quantitative and qualitative elements, and the model is verified by a case study. Because the suggested model estimates the activity duration by a reasonable schedule plan, it is expected to reduce the error between planning duration and actual duration in a construction project.

Development and Application of Total Maximum Daily Loads Simulation System Using Nonpoint Source Pollution Model (비점원오염모델을 이용한 오염총량모의시스템의 개발 및 적용)

  • Kang, Moon-Seong;Park, Seung-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.117-128
    • /
    • 2003
  • The objectives of this study are to develop the total maximum daily loads simulation system, TOLOS that is capable of estimating annual nonpoint source pollution from small watersheds, to monitor the hydrology and water quality of the Balkan HP#6 watershed, and to validate TOLOS with the field data. TOLOS consists of three subsystems: the input data processor based on a geographic information system, the models, and the post processor. Land use pattern at the tested watershed was classified from the Landsat TM data using the artificial neutral network model that adopts an error back propagation algorithm. Paddy field components were added to SWAT model to simulate water balance at irrigated paddy blocks. SWAT model parameters were obtained from the GIS data base, and additional parameters calibrated with field data. TOLOS was then tested with ungauged conditions. The simulated runoff was reasonably good as compared with the observed data. And simulated water quality parameters appear to be reasonably comparable to the field data.

Development of Defect Classification Program by Wavelet Transform and Neural Network and Its Application to AE Signal Deu to Welding Defect (웨이블릿 변환과 인공신경망을 이용한 결함분류 프로그램 개발과 용접부 결함 AE 신호에의 적용 연구)

  • Kim, Seong-Hoon;Lee, Kang-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • A software package to classify acoustic emission (AE) signals using the wavelet transform and the neural network was developed Both of the continuous and the discrete wavelet transforms are considered, and the error back-propagation neural network is adopted as m artificial neural network algorithm. The signals acquired during the 3-point bending test of specimens which have artificial defects on weld zone are used for the classification of the defects. Features are extracted from the time-frequency plane which is the result of the wavelet transform of signals, and the neural network classifier is tamed using the extracted features to classify the signals. It has been shown that the developed software package is useful to classify AE signals. The difference between the classification results by the continuous and the discrete wavelet transforms is also discussed.

  • PDF

H.263-Based Scalable Video Codec (H.263을 기반으로 한 확장 가능한 비디오 코덱)

  • 노경택
    • Journal of the Korea Society of Computer and Information
    • /
    • v.5 no.3
    • /
    • pp.29-32
    • /
    • 2000
  • Layered video coding schemes allow the video information to be transmitted in multiple video bitstreams to achieve scalability. they are attractive in theory for two reasons. First, they naturally allow for heterogeneity in networks and receivers in terms of client processing capability and network bandwidth. Second, they correspond to optimal utilization of available bandwidth when several video qualify levels are desired. In this paper we propose a scalable video codec architectures with motion estimation, which is suitable for real-time audio and video communication over packet networks. The coding algorithm is compatible with ITU-T recommendation H.263+ and includes various techniques to reduce complexity. Fast motion estimation is Performed at the H.263-compatible base layer and used at higher layers, and perceptual macroblock skipping is performed at all layers before motion estimation. Error propagation from packet loss is avoided by Periodically rebuilding a valid Predictor in Intra mode at each layer.

  • PDF

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

Range estimation of underwater moving source using frequency-difference-of-arrival of multipath signals (다중 경로 신호의 도달 주파수 차를 이용한 수중 이동 음원의 거리 추정)

  • Park, Woong-Jin;Kim, Ki-Man;Son, Yoon-Jun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.154-159
    • /
    • 2019
  • When measuring the radiating noise of an underwater moving source, the range information between the acoustic source and the receiver is an important evaluation factor, and the measurement standards such as a receiver position, a moving source depth and a speed are set. Although there is a method of using the cross correlation as a method of finding the range of the underwater moving source, this method requires a time synchronization process. In this paper, we proposed the method to estimate the range by comparing the Doppler frequency difference of the theoretically calculated multipath signal with the Doppler frequency difference of the multipath signal estimated from the received signal. The proposed method does not require a separate time synchronization process. Simulations were performed to verify the performance, and the ranging error of the proposed method reduced by about 95 % than that of the conventional method.

Multi-directional DRSS Technique for Indoor Vehicle Navigation (실내 차량 내비게이션을 위한 다방향 DRSS 기술)

  • Kim, Seon;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.936-942
    • /
    • 2022
  • While indoor vehicle navigation is an essential component in large-scale parking garages of major cities, technical limitations and challenging propagation environments considerably degrade the accuracy of existing localization techniques. This paper proposes a proximity detection scheme using low-cost beacons where a handheld mobile device within a moving vehicle autonomously detects its approximate position and moving direction by only observing Received Signal Strength (RSS) values of beacon signals. The proposed approach essentially exploits the differential RSS technique of multi-directional beams to reduce the impact of the environment, vehicle, and mobile device. A low-cost multi-directional beacon prototype is developed using Bluetooth technology. The localization performance is evaluated using 96 beacons in an underground parking garage within an area of 394.8m×304.3m. Experimental results show that the 90th percentile of the average proximity detection error is 0.8m. Furthermore, our proposed scheme provides robust proximity detection performance with various vehicles and mobile devices.

Question Similarity Measurement of Chinese Crop Diseases and Insect Pests Based on Mixed Information Extraction

  • Zhou, Han;Guo, Xuchao;Liu, Chengqi;Tang, Zhan;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3991-4010
    • /
    • 2021
  • The Question Similarity Measurement of Chinese Crop Diseases and Insect Pests (QSM-CCD&IP) aims to judge the user's tendency to ask questions regarding input problems. The measurement is the basis of the Agricultural Knowledge Question and Answering (Q & A) system, information retrieval, and other tasks. However, the corpus and measurement methods available in this field have some deficiencies. In addition, error propagation may occur when the word boundary features and local context information are ignored when the general method embeds sentences. Hence, these factors make the task challenging. To solve the above problems and tackle the Question Similarity Measurement task in this work, a corpus on Chinese crop diseases and insect pests(CCDIP), which contains 13 categories, was established. Then, taking the CCDIP as the research object, this study proposes a Chinese agricultural text similarity matching model, namely, the AgrCQS. This model is based on mixed information extraction. Specifically, the hybrid embedding layer can enrich character information and improve the recognition ability of the model on the word boundary. The multi-scale local information can be extracted by multi-core convolutional neural network based on multi-weight (MM-CNN). The self-attention mechanism can enhance the fusion ability of the model on global information. In this research, the performance of the AgrCQS on the CCDIP is verified, and three benchmark datasets, namely, AFQMC, LCQMC, and BQ, are used. The accuracy rates are 93.92%, 74.42%, 86.35%, and 83.05%, respectively, which are higher than that of baseline systems without using any external knowledge. Additionally, the proposed method module can be extracted separately and applied to other models, thus providing reference for related research.

Improvement of Electroforming Process System Based on Double Hidden Layer Network (이중 비밀 다층구조 네트워크에 기반한 전기주조 공정 시스템의 개선)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.61-67
    • /
    • 2023
  • In order to optimize the pulse electroforming copper process, a double hidden layer BP (Back Propagation) neural network is constructed. Through sample training, the mapping relationship between electroforming copper process conditions and target properties is accurately established, and the prediction of microhardness and tensile strength of the electroforming layer in the pulse electroforming copper process is realized. The predicted results are verified by electrodeposition copper test in copper pyrophosphate solution system with pulse power supply. The results show that the microhardness and tensile strength of copper layer predicted by "3-4-3-2" structure double hidden layer neural network are very close to the experimental values, and the relative error is less than 2.32%. In the parameter range, the microhardness of copper layer is between 100.3~205.6MPa and the tensile strength is between 112~485MPa.When the microhardness and tensile strength are optimal,the corresponding process conditions are as follows: current density is 2A-dm-2, pulse frequency is 2KHz and pulse duty cycle is 10%.