In this study, statistical and neural network methods were used to recognize the cutting tool states. This system employed the tool dynamometer and cutting force signals which are processed from the tool dynamometer sensor using linear discriminent function. To learn the necessary input/output mapping for turning operation diagnosis, the weights and thresholds of the neural network were adjusted according to the error back propagation method during off-line training. The cutting conditions, cutting force ratios and statistical values(standard deviation, coefficient of variation) attained from the cutting force signals were used as the inputs to the neural network. Through the suggested neural network a cutting tool states may be successfully diagnosed.
The monitoring of the chatter vibration is necessarily required to do automatic manufacturing system. To this study, we constructed a sensing system using tool dynamometer in order to the chatter vibration on cutting process. And a approach to a neural network using the feature of principal cutting force signals is proposed. with the error back propagation training process, the neural network memorized and classified the feature of principal cutting force signals. As a result, it is shown by neural network that the chatter vibration can be monitored effectively.
스캐너를 가지고 이미지를 스캔하면 RGB 값을 얻는다. 이 RGB 값은 스캐너의 빛을 인지하는 소자들의 하드웨어적인 특성이 더해진 장치 의존적인 값이다. 그래서 RGB 값은 왜곡된 칼라 정보를 가지고 있다. 그러므로 칼라 보정을 하기 위해서는 장치 독립적이 값으로 변환해야 한다. 본 논문에서는 장치 독립적인 값을 구하기 위해서 칼라 샘플들을 XYZ로 계측한 값과 400nm에서 700nm 사이의 파장을 계측한 분광 반사값(Spectral reflectance value)을 가지고 스캐너의 칼라 보정을 구현하였다. 구현 방법으로는 신경회로망의 오차 역전파(Error Back Propagation) 알고리즘을 사용하였고 두 가지의 데이터를 가지고 실험했을 때의 결과와 장단점을 비교하였다.
A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation which may amplify the variance of response. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameter setting, a new desirability function is proposed by considering POE as well as distance-to-target of response and response variance. The proposed method is illustrated using a rubber product case in Ribeiro et al. (2000).
The stencil is a thin stainless sheet in which a pattern is formed, which is placed on a surface of plate to reproduce the pattern of electric circuit. Conventionally the stencil has been produced by etching process. This process has many anti-environmental factors. In this study, Nd : YAG laser cutting process has been applied for stencil manufacturing. The study is focused on estimating kerf width of laser cut stencil by E.B.P.(Error Back-Propagation). This algorithm is good for estimating target value from input value. In this paper, target value was kerf width, and input values were frequency, pulse width, cutting speed and laser power. E.B.P. after teaming input and target could estimate kerf width from some variables precisely.
Spectral features of the seismic wave propagation from Odaesan Earthquake were evaluated based on the commonly treated random error between the observed data and the prediction values by the stochastic point-source ground-motion spectral model regarding the source, path and site effects. Radiation pattern of the error according to azimuth angle was found to be similar to the theoretical estimate. It was also observed that the spatial distribution of the errors was correlated with the geological map and the Q0 map which are indicatives of seismic boundaries.
전파신호의 추적은 국방을 비롯한 다양한 분야에서 여러 가지 기술 발전을 이루고 있다. 특히 시간의 경과에 따라 변경되는 PRI 및 주파수를 갖는 전파에 대해서는 Adaptable한 추적 능력을 필요로 한다. 본 논문에서는 다양하게 변하는 PRI 및 주파수 변경 신호들에 대해 지능적으로 적응해 가면서 추적할 수 있는 추적 방식을 제안하고 이를 실험하였다. 제안된 방식은 신경회로망의 오차 역전과 알고리즘을 이용한 방법으로, 모의 전파 신호를 시간 구간으로 나누어 학습하였고 이에 대한 성능 테스트를 한 결과 제안된 방법이 전파 신호를 효율적으로 추적할 수 있음을 확인하였다.
Kim, Nam-Shik;Kim, Jae-Bum;Park, Hyun-Cheol;Suh, Seung-Bum
ETRI Journal
/
제26권5호
/
pp.432-436
/
2004
In this paper, we propose the modified uniformly most powerful (UMP) belief-propagation (BP)-based decoding algorithm which utilizes multiplicative and additive factors to diminish the errors introduced by the approximation of the soft values given by a previously proposed UMP BP-based algorithm. This modified UMP BP-based algorithm shows better performance than that of the normalized UMP BP-based algorithm, i.e., it has an error performance closer to BP than that of the normalized UMP BP-based algorithm on the additive white Gaussian noise channel for low density parity check codes. Also, this algorithm has the same complexity in its implementation as the normalized UMP BP-based algorithm.
We propose a new type of nonlinear fixed interval smoother to which an existing nonlinear smoother is modified. The nonlinear smoother is derived from two-filter formulas. For the backward filter. the propagation and the update equation of error states are derived. In particular, the modified update equation of the backward filter uses the estimated error terms from the forward filter. Data fusion algorithm, which combines the forward filter result and the backward filter result, is altered into the compatible form with the new type of the backward filter. The proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing algorithm to off-line navigation system and show the proposed algorithm estimates position, and altitude fairly well through the computer simulation.
Park, Sung-Hyun;Lee, Yeoung-Soo;Lee, Sang-Bae;Kim, Il;Tack, Han-Ho
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
/
pp.474-478
/
1998
A new approach for the decision feedback equalizer(DFE) based on the back-propagation neural networks is described. We propose the method of optimal structure for back-propagation neural networks model. In order to construct an the optimal structure, we first prescribe the bounds of learning procedure, and the, we employ the method of incrementing the number of input neuron by utilizing the derivative of the error with respect to an hidden neuron weights. The structure is applied to the problem of adaptive equalization in the presence of inter symbol interference(ISI), additive white Gaussian noise. From the simulation results, it is observed that the performance of the propose neural networks based decision feedback equalizer outperforms the other two in terms of bit-error rate(BER) and attainable MSE level over a signal ratio and channel nonlinearities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.