• Title/Summary/Keyword: propagation effects

Search Result 1,155, Processing Time 0.032 seconds

Plane wave propagation in transversely isotropic magneto-thermoelastic rotating medium with fractional order generalized heat transfer

  • Lata, Parveen;Kaur, Iqbal
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.191-218
    • /
    • 2019
  • The aim of the present investigation is to examine the propagation of plane waves in transversely isotropic homogeneous magneto thermoelastic rotating medium with fractional order heat transfer. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal waves). The wave characteristics such as phase velocity, attenuation coefficients, specific loss, penetration depths, energy ratios and amplitude ratios of various reflected and transmitted waves are computed and depicted graphically. The conservation of energy at the free surface is verified. The effects of rotation and fractional order parameter by varying different values are represented graphically.

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.

On wave propagation of football ball in the free kick and the factors affecting it

  • Xumao Cheng;Ying Wu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.669-672
    • /
    • 2023
  • In this research, the researcher has examined the factors affecting the movement of the soccer ball and will show that the effects such as air resistance, altitude above sea level, wind, air pressure, air temperature, air humidity, rotation of the earth, changes in the earth's gravitational acceleration in different areas. It, the geographical length and latitude of the launch point, the change of gravitational acceleration with height, the change of pressure with height, the change of temperature with height and also the initial spin (Magnus effect) affect the movement of projectiles (especially soccer ball). We modelled th ball based on shell element and derive the motion equations by energy method. Finally, using numerical solution, the wave of the ball is studied. The influences of various parameters are investigated on wave propagation of the ball. Therefore, in short, it can be said that the main factors that play a major role in the lateral deviation of the hit ball are the initial spin of the ball and the wind.

Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.133-141
    • /
    • 2023
  • Based on the third-order shear deformation theory, the wave propagations in doubly curved spherical- and cylindrical- panels reinforced by carbon nanotubes (CNTs) are firstly investigated in present work. The coupled equations of wave propagation for the carbon nanotubes reinforced composite (CNTRC) doubly curved panels are established. Then, combined with the harmonic balance method, the eigenvalue technique is adopted to simulate the velocity-wave number curves of the CNTRC doubly curved panels. In the end, numerical results are showed to discuss the effects of the impact of key parameters including the volume fraction, different shell types (including spherical (R1=R2=R) and cylindrical (R1=R, R2=→∞)), wave number as well as modal number on the sensitivity of elastic waves propagating in CNTRC doubly curved shells.

A Study on the Ionogram Inversion Algorithm Using Mean Value Theorem (평균치 정리를 이용한 진리층관측도 변환 알고리즘에 관한 연구)

  • Park, Hyung Rae;Chae, Jong Seok;Lee, Hyuck Jae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.201-206
    • /
    • 1987
  • A description of ionogram inversion algorithm developed for obtaining ionospheric electron density profile from ionospheric sounding datas (ionograms) in real time using mean value theorem is given and the methods for determining starting points and correcting valley effects are considered. The results derived from this algorithm are compared with the theoretically simulated datas, and the real electron density profiles from the measured ionograms taken at Radio research Laboratory in Korea are given to show its practical use.

  • PDF

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF

A Study of Worm Propagation Modeling extended AAWP, LAAWP Modeling (AAWP와 LAAWP를 확장한 웜 전파 모델링 기법 연구)

  • Jun, Young-Tae;Seo, Jung-Taek;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.5
    • /
    • pp.73-86
    • /
    • 2007
  • Numerous types of models have been developed in recent years in response to the cyber threat posed by worms in order to analyze their propagation and predict their spread. Some of the most important ones involve mathematical modeling techniques such as Epidemic, AAWP (Analytical Active Worm Propagation Modeling) and LAAWP (Local AAWP). However, most models have several inherent limitations. For instance, they target worms that employ random scanning in the entire nv4 network and fail to consider the effects of countermeasures, making it difficult to analyze the extent of damage done by them and the effects of countermeasures in a specific network. This paper extends the equations and parameters of AAWP and LAAWP and suggests ALAAWP (Advanced LAAWP), a new worm simulation technique that rectifies the drawbacks of existing models.

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

Input-Output Analysis on the Medical Service Industry between Korea and Japan (의료서비스산업의 산업연관분석)

  • 이견직;정영호
    • Health Policy and Management
    • /
    • v.10 no.1
    • /
    • pp.126-147
    • /
    • 2000
  • This paper empirically explores the nature of the medical service industry and its various propagation effects on the economy in the input-output model, as revealed by a comparative analysis between Korea and Japan. The main findings of the paper are as follows; First, the growth of medical industry induces above-average effect on employment. Second, the industry is of the characteristics of weak both backward and forward linkage effects implying a 'final demand dependency industry'. When compared with public service sectors, however, the medical services industry shows stronger backward linkage effect than those sectors. Furthermore, it has strong repercussion effects on the goods industries. Third, in order to produce per unit of services, the medical services industry of Korea uses relatively more drugs and medical devices than that of Japan. In general, it has been shown that production structure of medical service industry in Korea is 'hardware-oriented' one; on the other hand, 'software-oriented' in Japan which means that, as intermediate inputs, outsourcing and informatization has been used than those of Korea. From the findings of the paper it could be emphasized that the medical organizations in Korea should put more efforts on shifting the current hardware-oriented production structure to strengthen core competence by enhancing productivity and by outsourcing to improve efficiency of production process. However, the medical organizations in Korea would not have enough incentives for high value-added production structure because they enjoy high operating surplus. Therefore, it would be necessary that government policy should be taken into account of these environments.

  • PDF

The Effects of 3.5% NaCl Aqueous Solution Temperature on the Corrosion Fatigue Fracture of Dual phase steel (3.5% NaCl 수용액의 온도변화가 복합조직강의 부식피로파괴에 미치는 영향)

  • 오세욱;도영문;박수영;김재철;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.140-147
    • /
    • 1992
  • Corrsion fatigue test was performed under rotated bending in 3.5% NaCl aqueous solution having a temperature from 278.deg.K in order to investigate the effects of aqueous solution remperature on the corrosion fatigue fracture of raw material steel(SS41) and dual phase steel that was produced from SS41 by a series of heat treatment. Corrosion fatigue life decreases remarkably with increase in solution temperature or with decrease in stress level. The corrosion fatigue life and the crack propagation rate at 303.deg.K show the similar behaviors with those at 318.deg.K, which is assumed to be caused by concentration polarization phenamena. The number and the lengths of microcracks increase with increase in solution temperature, so they lead to the decrease in corrosion fatigue life.

  • PDF