• 제목/요약/키워드: proof of Ukin's Theorem

검색결과 4건 처리시간 0.024초

단일입력 불확실 비선형 시스템에 대한 Utkin 정리의 증명 (A Poof of Utkin's Theorem for SI Uncertain Nonlinear Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제66권11호
    • /
    • pp.1612-1619
    • /
    • 2017
  • In this note, a complete proof of Utkin's theorem is presented for SI(single input) uncertain nonlinear systems. The invariance theorem with respect to the two nonlinear transformation methods so called the two diagonalization methods is proved clearly, comparatively, and completely for SI uncertain nonlinear systems. With respect to the sliding surface and control input transformations, the equation of the sliding mode i.e., the sliding surface is invariant, which is proved completely. Through an illustrative example and simulation study, the usefulness of the main results is verified. By means of the two nonlinear transformation methods, the same results can be obtained.

Utkin 정리의 다입력 불확실 선형 시스템에 대한 증명 (A Poof of Utkin's Theorem for a MI Uncertain Linear Case)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1680-1685
    • /
    • 2010
  • In this note, a proof of Utkin's theorem is presented for a MI(Multi Input) uncertain linear case. The invariance theorem with respect to the two transformation methods so called the two diagonalization methods are proved clearly and comparatively for MI uncertain linear systems. With respect to the sliding surface transformation and the control input transformation, the equation of the sliding mode i.e., the sliding surface is invariant. Both control inputs have the same gains. By means of the two transformation methods the same results can be obtained. Through an illustrative example and simulation study, the usefulness of the main results is verified.

Utkin 정리의 단일입력 불확실 적분 선형 시스템에 대한 증명 (A Poof of Utkin's Theorem for the SI Uncertain Integral linear Case)

  • 이정훈
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.843-847
    • /
    • 2011
  • In this note, a proof of Utkin's theorem is presented for the SI(Single Input) uncertain integral linear case. The invariance theorem with respect to the two transformation methods so called the two diagonalization methods are proved clearly and comparatively for SI uncertain integral linear systems. With respect to the sliding surface transformation, the equation of the sliding mode, the sliding surface is invariant. Both the applied control inputs have the same gains. By means of the two transformation methods the same results can be obtained. Through an illustrative example and simulation study, the usefulness of the main results is verified.

Utkin 정리의 단일입력 불확실 선형 시스템에 대한 증명 (A Poof of Utkin's Theorem for a SI Uncertain Linear Case)

  • 이정훈
    • 전자공학회논문지SC
    • /
    • 제48권6호
    • /
    • pp.8-14
    • /
    • 2011
  • 본 연구에서는 불확실 단일 입력 시스템의 경우에 대하여 Utkin 정리의 증명을 제시한다. 소위 두가지의 대각화 방법(Diagonalization Method)이라 불리는 Utkin 정리의 두 변환 방법에 대한 불변 정리를 비교적으로 분명히 증명한다. 슬라이딩모드의 수식 즉 슬라이딩 면은 두가지 대각화 변환에 대하여 변화 없고 두 인가된 제어입력은 같은 이득을 갖는다. 두가지 대각화 방법에 의하여 같은 결과를 얻는다. 설계 예와 시뮬레이션 연구를 통하여 제안된 결과의 효용성을 입증한다.