A Poof of Utkin's Theorem for a SI Uncertain Linear Case

Utkin 정리의 단일입력 불확실 선형 시스템에 대한 증명

  • Lee, Jung-Hoon (Dept of Control & Instrum. Eng., Gyeongsang National University)
  • 이정훈 (국립경상대학교 제어계측공학과, ERI)
  • Received : 2011.01.24
  • Published : 2011.11.25

Abstract

In this note, a proof of Utkin's theorem is presented for SI(Single input) uncertain linear systems. The invariance theorem with respect to the two transformation methods so called the two diagonalization methods is proved clearly and comparatively for SI uncertain linear systems. With respect to the sliding surface transformation, the equation of the sliding mode i.e., the sliding surface is invariant. The control inputs by the two transformation methods both have the same gains. By means of the two transformation methods, the same results can be obtained. Through an illustrative example and simulation study, the usefulness of the main results is verified.

본 연구에서는 불확실 단일 입력 시스템의 경우에 대하여 Utkin 정리의 증명을 제시한다. 소위 두가지의 대각화 방법(Diagonalization Method)이라 불리는 Utkin 정리의 두 변환 방법에 대한 불변 정리를 비교적으로 분명히 증명한다. 슬라이딩모드의 수식 즉 슬라이딩 면은 두가지 대각화 변환에 대하여 변화 없고 두 인가된 제어입력은 같은 이득을 갖는다. 두가지 대각화 방법에 의하여 같은 결과를 얻는다. 설계 예와 시뮬레이션 연구를 통하여 제안된 결과의 효용성을 입증한다.

Keywords

References

  1. V.I. Utkin,, Sliding Modes and Their Application in Variable Structure Systems. Moscow, 1978.
  2. Decarlo, R.A., Zak, S.H., and Mattews, G.P., "Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial," Proc. IEEE, 1988, 76, pp.212-232.
  3. Young, K.D., Utkin, V.I., Ozguner, U, "A Control Engineer's Guide to Sliding Mode Control," 1996 IEEE Workshop on Variable Structure Systems, pp.1-14
  4. Drazenovic, B.:The invariance conditions in variable structure systems, Automatica, 1969, (5), pp.287-295. https://doi.org/10.1016/0005-1098(69)90071-5
  5. J. H. Lee and M. J. Youn, "An Integral-Augmented Optimal Variable Structure control for Uncertain dynamical SISO System, KIEE(The Korean Institute of Electrical Engineers), vol.43, no.8, pp.1333-1351, 1994.
  6. V. I. Utkin and K. D. Yang, "Methods for Constructing Discontinuity Planes in Multidimentional Variable Structure Systems," Automat. Remote Control, vol. 39 no. 10 pp.1466-1470, 1978.
  7. D. M. E. El-Ghezawi, A. S. I. and S. A. Bilings, "Analysis and Design of Variable Structure Systems Using a Geometric Approach," Int. J. Control, vol,38, no.3 pp.657-671,1 1983. https://doi.org/10.1080/00207178308933100
  8. A. Y. Sivaramakrishnan, M. Y. Harikaran, and M. C. Srisailam, " Design of Variable Structure Load Frequency controller Using Pole Assignment Technique," Int. J. Control, vol,40 no.3, pp. 487-498, 1984 https://doi.org/10.1080/00207178408933289
  9. C. M. Dorling and A. S. I. Zinober, "Two approaches to Hyperplane Design in Multivariable Variable Structure Control systems," Int. J. Control, vol,44 no.1, pp. 65-82 1986. https://doi.org/10.1080/00207178608933583
  10. S. V. Baida and D. B. Izosimov, "Vector Method of Design of Sliding Motion and Simplex Algorithms." Automat. Remote Control, vol. 46 pp.830-837, 1985.
  11. B. Fernandez and J. K. Hedrick, "Control of Multivariable Nonlinear System by the Sliding Mode Method," I. J. Control, vol.46, no.3 pp.1019-1040, 1987. https://doi.org/10.1080/00207178708547410
  12. S. R. Hebertt, "Differential Geometric Methods in Variable Structure Control," Int. J. Control, vol,48 no.4, pp.1359-1390, 1988. https://doi.org/10.1080/00207178808906256
  13. T. L. Chern and Y. C. Wu, "An Optimal Variable Structure Control with Integral Compensation for Electrohydraulic postion Servo Control Systems," IEEE T. Industrial Electronics, vol.39, no.5 pp460-463, 1992. https://doi.org/10.1109/41.161478
  14. K. Yeung, C. Cjiang, and C. Man Kwan, "A Unifying Design of Sliding Mode and Classical Controller' IEEE T. Automatic Control, vol.38, no.9 pp 1422-1427, 1993 https://doi.org/10.1109/9.237660
  15. R. DeCarlo and S. Drakunov, "Sliding Mode Control Design via Lyapunov Approach," Proc. 33rd IEEE Conference on CDC, pp.1925-1930, 1994.
  16. W. C. Su S. V. Drakunov, and U. Ozguner, "Constructing Discontinuity Surfaces for Variable Structure Systems: A Lyapunov Approach," Automatica, vol.32 no.6 pp.925-928,1996 https://doi.org/10.1016/0005-1098(96)00017-9
  17. J. Ackermann and V. I. Utkin, " Sliding Mode Control Design based on Ackermann's Formula," IEEE T. Automatic Control, vol.43, no.9 pp.234-237, 1998 https://doi.org/10.1109/9.661072
  18. T. Acarman and U. Ozguner, "Relation of Dynamic Sliding surface Design and High Order Sliding Mode Controllers," Proc. 40th IEEE Conference on CDC, pp.934-939, 2001.
  19. W. J. Cao and J. X. Xu, "Nonlinear Integral-Type Sliding Surface for Both Matched and Unmatched Uncertain Systems," IEEE T. Automatic Control, vol.49, no83 pp 1355-1360,2004. https://doi.org/10.1109/TAC.2004.832658
  20. H. H. Choi, "LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems, IEEE T. Automatic Control, vol.52, no.2 pp 736-742, 2007. https://doi.org/10.1109/TAC.2007.894543
  21. J. H. Lee, "A New Robust Continuous VSCS by Saturation Function for Uncertain Nonlinear Plants," IEEK, Vol.48-SC, no.3, pp.30-39, 2011.