• 제목/요약/키워드: proline accumulation

검색결과 64건 처리시간 0.027초

AZCA 저항성 돌연변이 세포주로부터 선발 육성만 내염성 벼 돌연변이 계통의 특성 검정 (Characterization of Salt Tolerant Rice Mutant Lines Derived from Azetidine-2-Carboxylic Acid Resistant Cell Lines Induced by Gamma Ray Irradiation)

  • 송재영;김동섭;이긍주;이인석;강권규;윤성중;강시용
    • Journal of Plant Biotechnology
    • /
    • 제34권1호
    • /
    • pp.61-68
    • /
    • 2007
  • 본 연구는 벼 배 배양 캘러스에 방사선 조사와 AZCA 처리를 통해 AZCA저항성 세포주를 선발 육성하고 proline 함량이 증가된 선발 계통을 중심으로 염분 스트레스에 저항성을 갖는 벼 계통을 육성하고 그 기작을 밝히고자 하였다. 먼저, 1) AZCA 저항성 후대로부터 NaCl 저항성 식물체를 선발하고, 2) 선발된 저항성 계통의 생리적 생화학적 특성을 분석하였으며, 3) 분자적 특성을 RT-PCR을 통해 조사하고 유전적 변이를 탐색하였다. AZCA저항성 $M_{3}$ 3,000 계통으로부터 얻어진 약 20,000 종자에 염분 적정 선발 농도로 밝혀진 1.5%의 염분을 처리하여 내염성 (ST) 벼 116 개체를 선발하고, $M_{4}$ 후대 세대를 양성하였다. $ST\;M_{4}$ 세대에서 2차 내염성 계통 선발을 위해서 $M_{4}$ 세대계통을 1.2% NACl 에서 대조구와 생육 조사한 결과, 대조구 식물은 생육이 약하고 성장이 지연되는 것을 볼 수 있었다. 내염성 계통(ST-13, ST-16)으로부터 유도된 캘러스에 NaCl 처리한 결과, 대조구, ST-13, ST-16의 생존율은 9%, 16%, 20%로 나타났다. 또한, 필수 아미노산 함량을 잎, 종자 및 캘러스로 나누어 분석한 결과 ST-13와 ST-16는 대조구와 비교하여, 1) 잎에서는 약 1.24, 1.3배, 2) 종자에서는 1.49, 2.43배, 3) 캘러스에서는 1.32, 1.60배 증가하는 것이 확인되었다. 내염성 계통과 대조구에서 이온함량을 비교한 결과 잎과 뿌리에서 $K^{+},\;Na^{+}$$Na^{+}/K^{+}$ 비율을 보면 대조구보다 $Na^{+}/K^{+}$ 비율이 낮아진 것이 확인되었다. 내염성과 연관된 유전자 P5CS, NHXI를 이용하여 RT-PCR 실험을 수행한 결과, 돌연변이 계통에서 이들 유전자의 발현이 증가됨을 확인할 수 있었다. 본 연구에서 선발된 계통은 내염성 육종 및 기초 연구를 위한 재료로 이용될 수 있을 것으로 사료된다.

살균 된장의 저장과정 중 품질변화 (Quality Changes of Sterilized Soybean Paste during Its Storage)

  • 오만진;김종생;최성현;이상덕;이규희
    • 한국식품영양과학회지
    • /
    • 제28권5호
    • /
    • pp.1069-1075
    • /
    • 1999
  • The sterilization was attempted to improve the quality deterioration of soybean paste during its storage. For this experiment, soybean paste was sterilized at 80oC for 30 minutes and stored during 6 months at 15oC and 30oC, respectively. The total approximate composition contents were moisture 52.5%, crude protein 11.94%, crude fat 2.0%, amino nitrogen 413.3mg%, sodium chloride 11.61% and ash 15.5%. According to the increase of storage period, pH was decreased gradually because of the increase of organic acids by the metabolism of microorganisms and the acid accumulation by acid forming bacteria, but titratable acidity was increased during storage. Amino nitrogen was rapidly increased for the first one or two month storage period and maintained as the same level for the rest of them. Each amino acid contents of soybean paste, which were glutamic acid, tryptophan, proline, arginine, and aspartic acid, had much higher level than others. In color changes sterilized soybean paste(SSP) was much lower than that of raw ones(RSP). Hunter L and b values on the surface of soybean paste were decreased during storage, and the decreasing levels were higher at 30oC than at 15oC. Hunter a value, however, was increased a little in the initial storage, and thereafter it was decreased. Lactic acid bacteria, yeasts, and molds were disappeared completely by the sterilization. However, the bacteria of aerobes and anaerobes were not disappeared by this processing.

  • PDF

Protective Effect of Artificially Enhanced Level of L-Ascorbic Acid against Water Deficit-Induced Oxidative Stress in Rice Seedlings

  • Boo, Yong Chool;Cho, Moonjae;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • 제42권2호
    • /
    • pp.66-70
    • /
    • 1999
  • Effects of the enhanced level of L-ascorbic acid (AA) on the water deficit-induced oxidative damage were studied in rice (Oryza sativa L.) seedlings. The seedlings sprayed with 20 to 80 mM L-galactono-${\gamma}$-lactone (GL), a putative precursor of AA, showed 2 to 5-fold higher levels of AA compared with controls. Pretreatment of the seedlings with GL prior to water stress imposition caused virtually no effect on dehydration of tissues during water deficit but substantially mitigated oxidative injury, as accessed by 2-thiobarbituric acid-reactive substances, ${\alpha}$-tocopherol, chlorophylls and ${\beta}$-carotene. Proline accumulation during water stress was also significantly lowered in the treated seedlings. In a complementary experiment, AA retarded photodegradation of ${\alpha}$-tocopherol in isolated thylakoids far more efficiently than glutathione. GL in itself did not show any noticeable reactivity toward ${\alpha}$-tocopheroxyl radical. The results demonstrate the antioxidative function of AA in rice seedlings encountering water-limited environments, suggesting a critical role of AA as a defense against oxidative stress in plants.

  • PDF

Morphological, Physiological and Biochemical Responses of Gerbera Cultivars to Heat Stress

  • Chen, Wen;Zhu, Xiaoyun;Han, Weiqing;Wu, Zheng;Lai, Qixian
    • 원예과학기술지
    • /
    • 제34권1호
    • /
    • pp.1-14
    • /
    • 2016
  • Heat stress is an agricultural problem for Gerbera jamesonii, and it often causes poor seedling growth, reduced flower yield and undesirable ornamental characteristics of flowers. However, little is known about the effect of heat stress on the morphological, physiological and biochemical characteristics of gerbera plants. Here, the responses of six cultivars of Gerbera jamesonii to heat stress were investigated. Under a 1-d heat treatment at $45^{\circ}C$, the leaves of gerbera cultivars showed yellowing, wilting, drying and death to varying degrees. The heat treatment also resulted in increased electrical conductivity, decreased soluble protein and chlorophyll contents, and the accumulation of malondialdehyde (MDA) and proline in leaves. Moreover, heat tolerance differed among the six tested gerbera cultivars. Our results demonstrated that among the six gerbera cultivars, 'Meihongheixin' is a heat-resistant cultivar, whereas 'Beijixing' is a heat-sensitive one. 'Shijihong' and 'Linglong' are relatively heat-resistant cultivars, and 'Dadifen' and 'Taiyangfengbao' are relatively heat sensitive.

명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 - (Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes -)

  • 추연식;송승달
    • The Korean Journal of Ecology
    • /
    • 제23권5호
    • /
    • pp.397-406
    • /
    • 2000
  • 건조지대 및 염의 영향을 받는 지역에 널리 분포하는 명아주과 식물의 생리생태학적 적응 특성을 규명하기 위하여 교란지, 염습지, 사구, 간척지 등 다양한 환경에 적응하여 살아가고 있는 10종 명아주과 식물의 무기 및 유기용질의 양상을 조사하였다. 조사된 명아주과 식물은 토양의 칼슘 함량과는 무관하게 체내에 매우 소량의 수용성 칼슘을 함유하였으며, 아주 높은 수용성 K/Ca 비를 보였다. Na/sup +/, K/sup +/와 같은 양이온 및 Cl/ sup -/, SO₄/sup 2-/와 같은 음이온을 많이 축적하는 경향을 보였으며, 염 환경에서는 K/ sup +/보다 Na/sup +/ 이온을 선호하는 경향을 보였다. 이들 식물의 체내 총 질소함량은 높았지만, 아미노산성 질소는 총 질소함량의 5% 이하로 매우 낮은 값을 보였다. 세포질성 삼투인자로 널리 알려진 proline을 거의 함유하지 않았지만, 가용성 질소의 함량이 높은 것으로 보아 proline 이외의 다른 질소화합물이 체내 삼투 조절에 관여할 것으로 여겨진다. 야외에서의 이러한 생리적 특징이 통제된 환경에서도 동일한 양상을 보이는지를 조사하기 위하여, 사구 및 염습지의 대표적인 명아주과 식물(퉁퉁마디, 칠면초, 호모초, 가는갯능쟁이, 나문재) 5종을 선택하여 염환경 하에서 생육시켰다 (200 mM Nacl). 조사된 명아주과 식물은 매우 낮은 체내 수용성 Ca/sup 2+/ 함량, 알칼리 양이온의 축적 등 야외식 물과 유사한 생리양상을 보였다. 종합하면, 명아주과 식물은 알칼리 양이온 및 Cl/sup -/, NO₃/sup -/ 및 SO₄/sup 2-/와 같은 무기 음이온을 상당량 축적하고, 체내로 유입되는 Ca/sup 2+/을 Ca-oxalate로 침전시켜 세포질 내 수용성 칼슘함량을 매우 낮은 수준으로 유지하며, 아미노산이외의 다른 가용성 질소화합물을 보편적으로 함유하는 미네랄 대사의 특성을 보여준다. 이에 부가하여 토양 환경의 변화에 따라 체내의 무기이온 및 유기용질의 양상을 적절히 조절하는 독특한 생리적 특성이 이들 명아주과 식물을 건조 및 고염과 같은 불리한 환경을 극복하여 적응케 하는 토대가 되는 것으로 여겨진다.

  • PDF

HvIRIP 과발현 유채 형질전환체의 내한성 증진 (Overexpression of Ice Recrystallization Inhibition Protein (HvIRIP) from Barley Enhances Cold Tolerance in Transgenic rapeseed plants)

  • 노경희;박종석;강한철;김종범;장영석;김광수;이한길
    • Journal of Applied Biological Chemistry
    • /
    • 제58권4호
    • /
    • pp.325-332
    • /
    • 2015
  • 유채는 월동작물로 내한성이 약해 남부지역에서만 재배가 가능하다. 따라서 재배면적 확대 및 안정적 생산성 확보를 위해 내한성 증진 품종 육성이 절실하다. 본 연구에서는 유채의 내한성을 증진시키기 위해 보리에서 유래한 HvIRIP 유전자를 CaMV35S 프로모터 조절하에서 전신발현되도록 운반체를 제작하였고, 아그로박테리움을 이용하여 유채에 형질전환하였다. Southern 분석을 통해 HvIRIP 유전자가 유채 Genome 안으로 전이 되었음을 확인하였다. 또한 Northern 분석을 통해 $4^{\circ}C$에서 2주간 처리된 유묘에서 HvIRIP 유전자의 발현이 크게 증대되는 것을 알 수 있었다. 본엽 3-4매 전개 유채 형질전환체를 영하 $5^{\circ}C$에서 2일간 저온에 노출한 후 회복여부를 조사한 결과, 대조구는 회복하지 못하고 죽은 반면, 형질전환체는 회복이 정상적으로 이루어졌다. 또한 저온스트레스가 진행되는 동안에 스트레스를 극복하는데 필요한 Proline 함량이 형질전환체에서 크게 증대되는 것이 관찰되었다. 이 외에도 저온스트레스 과정 중에 생성되는 활성산소의 독성을 감소시키는 항산화제 효소인 CAT, SOD 그리고 ADH 활성을 측정한 결과, 대조구에 비해 형질전환체에서 그 함량이 현저히 증가됨을 알 수 있었다. 따라서 이러한 결과를 통해 HvIRIP 유전자가 함유된 유채 형질전환체의 내한성이 증진되었음을 확인하였다.

Corynebacterium glutamicum에서의 glutamate계 아미노산 생합성의 유전적 조절 (Genetic regulation for the biosynthesis of glutamate family in Corynebacterium glutamicum)

  • Kim In-Ju;Kyung Hee Min;Sae Bae Lee
    • 한국미생물·생명공학회지
    • /
    • 제14권5호
    • /
    • pp.427-432
    • /
    • 1986
  • The regulation of three ammonia assimilatory enzymes, GDH (glutamate dehydrogenase), GS (glutamine synthetase) and GOGAT (glutamate synthase), has been examined in C. glutamicum. Three kinds of arginine auxotrophs blocked in each step of arginine biosynthetic pathway from glutamate were selected as arg 5, arg 6, arg 8. Histidine and tryptophan auxotrophs were also selected because histidine and tryptophan repressed GS biosynthesis in E. coli. These strains were cultured on the media containing nitrogen-excess and limited conditions, to compare the specific activities of ${\alpha}$-ketoglutarate dehydrogenase(${\alpha}-KGDH$), GDH, GS, GOGAT from the cell-free extracts. These results showed that enzyme levels of ${\alpha}-KGDH$ and GDH from 3 kinds of arginine auxotrophs, histidine and tryptophan auxotrophs in nitrogen-excess condition and those of GS and GOGAT in nitrogen limited condition were increased compared with opposite condition. The tryptophan and histidine auxotrophs showed higher level of glutamate and glutamine than parental strains and other mutants. it is assumed that the higher levels of ${\alpha-KGDH}$ and GDH from mutants in nitrogen-excess condition promoted the accumulation of glutamate and glutamine in fermentation broth. The inhibition of GS activities by ADP suggested that GS is regulated by energy charge in C. glutamicum. The results with histidine, tryptophan, glycine, alanine, serine and GMP implied that a system of feedback inhibition were effective. The GDH, GS and GOGAT biosynthesis in culture broth was markedly repressed by the nature and kinds of available nitrogen sources such as tryptophan, proline, glycine, alanine, serine and tyrosine.

  • PDF

Salt-Responsive Genes in Salt Tolerant Rice Mutants Revealed through Microarray Analysis

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Kang, Si-Yong;Kim, Jin-Baek;Lee, Kyung Jun;Yun, Song Joong
    • 방사선산업학회지
    • /
    • 제4권4호
    • /
    • pp.325-334
    • /
    • 2010
  • Transcriptional regulation in response to salt in mutant lines was investigated using oligonucleotide microarrays. In order to characterize the salt-responsive genes in rice, the expression profiles of transcripts that responded to salt-treatment were monitored using the microarrays. In the microarray analysis, among 37,299 reliable genes, 5,101, 2,758 and 2,277 genes were up-regulated by more than 2-fold using the salt treatment, while the numbers of down-regulated genes were 4,619, 3,234, and 1,878 in the WT, ST-495, and ST-532, respectively. From genotype changes induced by gamma ray mutagenesis, 3,345 and 2,397 genes were up-regulated, while 2,745 and 2,075 genes were down-regulated more than 2-fold in the two untreated mutants lines compared with untreated WT, respectively. A total of 3,108 and 2,731 genes were up-regulated more than 2-fold, while 3,987 and 3,660 genes were down-regulated by more than 2-fold in the salt treatment of the two mutants lines compared with the salt treated WT, respectively. The expressions of membrane transporter genes such as OsAKT1, OsKUP, and OsNAC increased more severely in ST-495 and ST-532 than in the WT. The expressions of the proline accumulation related genes such as OsP5CS and OsP5CR were also markedly increased in the salt tolerant mutants when compared to the WT plant.

Regulation of Chilling Tolerance in Rice Seedlings by Plant Hormones

  • Chu, Chun;Lee, Tse-Min
    • 한국작물학회지
    • /
    • 제37권3호
    • /
    • pp.288-298
    • /
    • 1992
  • Since the major important factors limiting plant growth and crop productivity are environmental stresses, of which low temperature is the most serious. It has been well known that many physiological processes are alterant in response to the environmental stress. With regard to the relationship between plant hormones and the regulation of chilling tolerance in rice seedlings, the major physiological roles of plant hormones: abscisic acid, ethylene and polyamines are evaluated and discussed in this paper. Rice seedlings were grown in culture solution to examine the effect of such plant hormones on physiological characters related to chilling tolerance and also to compare the different responses among tested cultivars. Intact seedlings about 14 day-old were chilled at conditions of 5$^{\circ}C$ and 80% relative humidity for various period. Cis-(+)-ABA content was measured by the indirect ELISA technique. Polyamine content and ethylene production in leaves were determined by means of HPLC and GC respectively. Chilling damage of seedlings was evaluated by electrolyte leakage, TTC viability assay or servival test. Our experiment results described here demonstrated the physiological functions of ABA, ethylene, and polyamines related to the regulation of chilling tolerance in rice seedlings. Levels of cis-(+)-ABA in leaves or xylem sap of rice seedlings increased rapidly in response to 5$^{\circ}C$ treatment. The tolerant cultivars had significant higher level of endogenous ABA than the sensitive ones. The ($\pm$)-ABA pretreatment for 48 h increased the chilling tolerance of the sensitive indica cultivar. One possible function of abscisic acid is the adjustment of plants to avoid chilling-induced water stress. Accumulation of proline and other compatible solutes is assumed to be another factor in the prevention of chilling injuies by abscisic acid. In addition, the expression of ABA-responsive gene is reported in some plants and may be involving in the acclimation to low temperature. Ethylene and its immediate precusor, 1-amincyclopropane-1-carboxylic acid(ACC) increased significantly after 5$^{\circ}C$ treatment. The activity of ACC synthase which converts S-adenosylmethionine (SAM) to ACC enhanced earlier than the increase of ethylene and ACC. Low temperature increased ACC synthase activity, whereas prolonged chilling treatment damaged the conversion of ACC to ethylene. It was shown that application of Ethphon was beneficial to recovering from chilling injury in rice seedlings. However, the physiological functions of chilling-induced ethylene are still unclear. Polyamines are thought to be a potential plant hormone and may be involving in the regulation of chilling response. Results indicated that chilling treatment induced a remarkable increase of polyamines, especially putrescine content in rice seedlings. The relative higher putrescine content was found in chilling-tolerant cultivar and the maximal level of enhanced putrescine in shoot of chilling cultivar(TNG. 67) was about 8 folds of controls at two days after chilling. The accumulation of polyamines may protect membrane structure or buffer ionic imbalance from chilling damage. Stress physiology is a rapidly expanding field. Plant growth regulators that improve tolerance to low temperature may affect stress protein production. The molecular or gene approaches will help us to elucidate the functions of plant hormones related to the regulation of chilling tolerance in plants in the near future.

  • PDF

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF