DOI QR코드

DOI QR Code

Morphological, Physiological and Biochemical Responses of Gerbera Cultivars to Heat Stress

  • Chen, Wen (School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University) ;
  • Zhu, Xiaoyun (School of Landscape and Architecture, Zhejiang Agriculture & Forestry University) ;
  • Han, Weiqing (School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University) ;
  • Wu, Zheng (School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University) ;
  • Lai, Qixian (School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University)
  • Received : 2015.07.11
  • Accepted : 2016.01.25
  • Published : 2016.02.29

Abstract

Heat stress is an agricultural problem for Gerbera jamesonii, and it often causes poor seedling growth, reduced flower yield and undesirable ornamental characteristics of flowers. However, little is known about the effect of heat stress on the morphological, physiological and biochemical characteristics of gerbera plants. Here, the responses of six cultivars of Gerbera jamesonii to heat stress were investigated. Under a 1-d heat treatment at $45^{\circ}C$, the leaves of gerbera cultivars showed yellowing, wilting, drying and death to varying degrees. The heat treatment also resulted in increased electrical conductivity, decreased soluble protein and chlorophyll contents, and the accumulation of malondialdehyde (MDA) and proline in leaves. Moreover, heat tolerance differed among the six tested gerbera cultivars. Our results demonstrated that among the six gerbera cultivars, 'Meihongheixin' is a heat-resistant cultivar, whereas 'Beijixing' is a heat-sensitive one. 'Shijihong' and 'Linglong' are relatively heat-resistant cultivars, and 'Dadifen' and 'Taiyangfengbao' are relatively heat sensitive.

Keywords

References

  1. Ahuja, I., R.C. de Vos, A.M. Bones, and R.D. Hall. 2010. Plant molecular stress responses face climate change. Trends Plant Sci. 15:664-674. https://doi.org/10.1016/j.tplants.2010.08.002
  2. Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207. https://doi.org/10.1007/BF00018060
  3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:48-254.
  4. Camejo, D., A. Jimenez, J.J. Alarcon, W. Torres, J.M. Gomez, and F. Sevilla. 2006. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct. Plant Biol. 33:177-187. https://doi.org/10.1071/FP05067
  5. Chaitanya, K.V., D. Sundar, and A.R. Reddy. 2001. Mulberry leaf metabolism under high temperature stress. Biol. Plant. 44:379-384. https://doi.org/10.1023/A:1012446811036
  6. Crafts-Brandner, S.J. and M.E. Salvucci. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129:1773-1780. https://doi.org/10.1104/pp.002170
  7. Deng, Y., S. Chen, F. Chen, X. Cheng, and F. Zhang. 2011. The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance. Plant Cell Rep. 30:2177-2186. https://doi.org/10.1007/s00299-011-1123-x
  8. Doganlar, Z.B., K. Demir, H. Basak, and I. Gul. 2010. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. Afr. J. Agric. Res. 5:2056-2065.
  9. Fan, H., C. Du, Y. Xu, and X. Wu, 2014. Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves. Hortic. Environ. Biotechnol. 55:159-165. https://doi.org/10.1007/s13580-014-0161-z
  10. Giaveno, C. and J. Ferrero. 2003. Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breed. Appl. Biotechnol. 3:89-94. https://doi.org/10.12702/1984-7033.v03n02a01
  11. Guilioni, L., J. Wery, and F. Tardieu. 1997. Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs. Ann. Bot. 80:159-168. https://doi.org/10.1006/anbo.1997.0425
  12. Gulen, H. and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166:739-744. https://doi.org/10.1016/j.plantsci.2003.11.014
  13. Hall, A.E. 2001. Crop responses to environment. CRC Press LLC, Boca Raton, FL, USA.
  14. Hasanuzzaman, M., K. Nahar, M.M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl. J. Mol. Sci. 14:9643-9684. https://doi.org/10.3390/ijms14059643
  15. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  16. Hiscox, J.T. and G.F. Israelstam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57:1332-1334. https://doi.org/10.1139/b79-163
  17. Hong, B., C. Ma, Y. Yang, T. Wang, K. Yamaguchi-Shinozaki, and J. Gao. 2009. Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol. Biol. 70:231-240. https://doi.org/10.1007/s11103-009-9468-z
  18. Ismail, A.M. and A.E. Hall. 1999. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 39:1762-1768. https://doi.org/10.2135/cropsci1999.3961762x
  19. Jaglo-Ottosen, K.R., S.J. Gilmour, D.G. Zarka, O. Schabenberger, and M.F. Thomashow. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106. https://doi.org/10.1126/science.280.5360.104
  20. Kishor, P.K., S. Sangam, R.N. Amrutha, P.S. Laxmi, K.R. Naidu, K.R.S.S. Rao, S. Rao, K.J. Reddy, P. Theriappan, and N. Sreenivasulu. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. India 88:424-438.
  21. Kumar, S., R. Kaur, N. Kaur, K. Bhandhari, N. Kaushal, K. Gupta, T.S. Bains, and H. Nayyar. 2011. Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol. Plant. 33:2091-2101. https://doi.org/10.1007/s11738-011-0748-2
  22. Li, H.S., Q. Sun, S.J. Zhao, and W.H. Zhang. 2000. Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, China.
  23. Mcclung, C.R. and S.J. Davis. 2010. Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr. Biol. 20:1086-1092. https://doi.org/10.1016/j.cub.2010.04.042
  24. Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11:15-19. https://doi.org/10.1016/j.tplants.2005.11.002
  25. Mittler, R., A. Finka, and P. Goloubinoff. 2012. How do plants feel the heat. Trends Biochem. Sci. 37:118-125. https://doi.org/10.1016/j.tibs.2011.11.007
  26. Mittler, R. and E. Blumwald. 2010. Genetic engineering for modern agriculture: challenges and perspectives. Ann. Rev. Plant Biol. 61:443-462. https://doi.org/10.1146/annurev-arplant-042809-112116
  27. Mohammed, A.R. and L. Tarpley. 2010. Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. Eur. J. Agron. 33:117-123. https://doi.org/10.1016/j.eja.2009.11.006
  28. Peng, J.Z., A. Li, Z.G. Huang, Z.P. Chen, F.D. Wen, and X.J. Wang. 2010. Screening for heat-tolerant variants and field identification of Gerbera hybrida. Sci. Agric. Sin. 2:022.
  29. Piramila, B.H.M., A.L. Prabha, V. Nandagopalan, and A.L. Stanley. 2012. Effect of heat treatment on germination, seedling growth and some biochemical parameters of dry seeds of black gram. Int. J. Pharm. Phytopharm. Res. 1:194-202.
  30. Rodriguez, M., E. Canales, and O. Borras-Hidalgo. 2005. Molecular aspects of abiotic stress in plants. Biotechnol. Appl. 22:1-10.
  31. Sairam, R.K. and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. India 86:407.
  32. Shavrukov, Y., P. Langridge, M. Tester, and E. Nevo. 2010. Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breed. Sci. 60:426-435. https://doi.org/10.1270/jsbbs.60.426
  33. Siddique, K.H.M., S.P. Loss, K.L. Regan, D. Tennant, and R.L. Jettner. 1999. Adaptation and seed yield of cool season grain legumes in Mediterranean environments of south-western Australia. Aust. J. Agric. Res. 50:375-388. https://doi.org/10.1071/A98096
  34. Sun, X., L. Hu, Y. Xie, and J. Fu. 2014. Evaluation of genotypic variation in heat tolerance of tall fescue by functional traits. Euphytica 199:247-260. https://doi.org/10.1007/s10681-014-1122-4
  35. Tang, R.S., J.C. Zheng, Z.Q. Jin, D.D. Zhang, Y.H. Huang, and L.G. Chen. 2008. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul. 54:37-43.
  36. Tian, Z.G., F. Wang, W.E. Zhang, and X.M. Zhao. 2011. Effects of heat stress on growth and physiology of marigold cultivars. Acta Hortic. Sin. 38:1947-1954.
  37. Toh, S., A. Imamura, A. Watanabe, K. Nakabayashi, M. Okamoto, Y. Jikumaru, A. Hanada, Y. Aso, K. Ishiyama, N. Tamura, S. Iuchi, M. Kobayashi, S. Yamaguchi, Y. Kamiya, E. Nambara, and N. Kawakami. 2008. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 146:1368-1385. https://doi.org/10.1104/pp.107.113738
  38. Tubiello, F.N., J.F. Soussana, and S.M. Howden. 2007. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA. 104:19686-19690. https://doi.org/10.1073/pnas.0701728104
  39. Ueda A., W. Shi, T. Shimada, H. Miyake, and T. Takabe. 2008. Altered expression of barley proline transporter causes different growth responses in Arabidopsis. Planta 227:277-286.
  40. Vollenweider, P. and M.S. Gunthardt-Goerg. 2005. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 137:455-465. https://doi.org/10.1016/j.envpol.2005.01.032
  41. Wahid, A. and T.J. Close. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant. 51:104-109. https://doi.org/10.1007/s10535-007-0021-0
  42. Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  43. Wang, J.Z., L.J. Cui, Y. Wang, and J.L. Li. 2009. Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol. Plant. 53:237-242. https://doi.org/10.1007/s10535-009-0045-8
  44. Wheeler, T.R., P.Q. Craufurd, R.H. Ellis, J.R. Porter, and P.V. Prasad. 2000. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82:159-167. https://doi.org/10.1016/S0167-8809(00)00224-3
  45. Xu, S., J. Li, X. Zhang, H. Wei, and L. Cui. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ. Exp. Bot. 56:274-285. https://doi.org/10.1016/j.envexpbot.2005.03.002
  46. Xu, Z.Z. and G.S. Zhou. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080-1090. https://doi.org/10.1007/s00425-006-0281-5
  47. Young, L.W., R.W. Wilen, and P.C. Bonham-Smith. 2004. High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55:485-495. https://doi.org/10.1093/jxb/erh038
  48. Zhang, X., J. Cai, B. Wollenweber, F. Liu, T. Dai, W. Cao, and D. Jiang. 2013. Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. J. Cereal Sci. 57:134-140. https://doi.org/10.1016/j.jcs.2012.10.010

Cited by

  1. Physiological and Proteomic Responses of Contrasting Alfalfa (Medicago sativa L.) Varieties to High Temperature Stress vol.12, pp.None, 2016, https://doi.org/10.3389/fpls.2021.753011
  2. Heat Treatment in Two Tomato Cultivars: A Study of the Effect on Physiological and Growth Recovery vol.7, pp.5, 2021, https://doi.org/10.3390/horticulturae7050119