Abstract
A study was conducted to evaluate the effects of irrigation (amount, interval) on tree growth, fruit quality, and cracking of organic 'Campbell Early' grapevine in 2012 and 2013. Three irrigation treatments were applied using a sprinkler system from mid-June to mid-August in 2012 and 2013, as follows: 10 mm was applied daily (10 mm-IR), 20 mm was applied every two days (20 mm-IR), and 30 mm was applied every five days (30 mm-IR). Soil electrical conductivity (EC) and temperature were found to be greatest in the 10 mm-IR treatment in both years. Soil moisture content ranged between 20-40% in the 10 mm-IR, between 20-60% in the 20 mm-IR, and between 20-70% in the 30 mm-IR treatment plots. The total number of leaves per shoot and shoot growth were found to be greatest in the 20 mm-IR and 30 mm-IR treatments, respectively. Cluster and berry weights, and cluster and berry sizes were not consistently affected by the treatments. The 10 mm-IR treatment resulted in an increase in fruit SSC, SSC/acidity ratio, and berry skin pigmentation ($b^*$; blue). Approximately 5% of fruit cracking was observed on average over both years in the 10 mm-IR-treated fruit, while the 30 mm-IR treatment resulted in nearly 18% of cracking in 2012. Average marketable fruit yield per year over two years was greatest for the 10 mm-IR treatment ($24.4t{\cdot}ha^{-1}$) followed by the 30 mm-IR treatment ($22.7t{\cdot}ha^{-1}$) and lastly the 20 mm-IR treatment ($22.2t{\cdot}ha^{-1}$). Thus, the 10 mm-IR treatment represents a suitable irrigation regimen for controlling leaf and shoot growth of vines grown under a rain-shelter system in sandy loam soils, while improving fruit sugar contents and skin color and limiting fruit cracking.