• 제목/요약/키워드: proliferation, migration

검색결과 587건 처리시간 0.026초

Overexpression of RUNX3 Inhibits Malignant Behaviour of Eca109 Cells in Vitro and Vivo

  • Chen, Hua-Xia;Wang, Shuai;Wang, Zhou;Zhang, Zhi-Ping;Shi, Shan-Shan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1531-1537
    • /
    • 2014
  • Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene whose reduced expression may play an important role in the development and progression of esophageal squamous cell cancer (ESCC). The aim of this study was to investigate the clinical relevance of RUNX3 in ESCC patients and effects of overexpression on biological behaviour of Eca109 cells in vitro and in vivo. Immunohistochemistry was performed to detect the clinical relevance of RUNX3 and lymph node metastasis in 80 ESCC tissues and 40 non-cancerous tissues using the SP method. RT-PCR and Western blotting were applied to assess the RUNX3 level and verify the Eca109 cell line with stable overexpression. Localization of RUNX3 proteins was performed by cell immunofluorescence. CCK-8 and Scrape motility assays were used to determine proliferation and migration and the TUNEL assay to analyze cell apoptosis. Invasive potential was assessed in cell transwell invasion experiments. In nude mice, tumorigenesis in vivo was determined. Results showed decreased expression of RUNX3 in esophageal tissue to be significantly related to lymph node metastasis (LNM) (P<0.01). In addition, construction of a recombinant lentiviral vector and transfection into the human ESCC cell line Eca109 demonstrated that overexpression could inhibit cell proliferation, migration and invasion, and induce apoptosis. The in vivo experiments in mice showed tumorigenicity and invasiveness to be significantly reduced. Taken together, our studies indicate that underexpression of RUNX3 in human ESCC tissue is significantly correlated with progression. Restoration of RUNX3 expression significantly inhibits ESCC cells proliferation, migration, invasion and tumorigenesis.

Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression

  • Lee, Mi Nam;Hwang, Hee-Su;Oh, Sin-Hye;Roshanzadeh, Amir;Kim, Jung-Woo;Song, Ju Han;Kim, Eung-Sam;Koh, Jeong-Tae
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.2.1-2.16
    • /
    • 2018
  • Supplementation of mesenchymal stem cells (MSCs) at sites of bone resorption is required for bone homeostasis because of the non-proliferation and short lifespan properties of the osteoblasts. Calcium ions ($Ca^{2+}$) are released from the bone surfaces during osteoclast-mediated bone resorption. However, how elevated extracellular $Ca^{2+}$ concentrations would alter MSCs behavior in the proximal sites of bone resorption is largely unknown. In this study, we investigated the effect of extracellular $Ca^{2+}$ on MSCs phenotype depending on $Ca^{2+}$ concentrations. We found that the elevated extracellular $Ca^{2+}$ promoted cell proliferation and matrix mineralization of MSCs. In addition, MSCs induced the expression and secretion of osteopontin (OPN), which enhanced MSCs migration under the elevated extracellular $Ca^{2+}$ conditions. We developed in vitro osteoclast-mediated bone resorption conditions using mouse calvaria bone slices and demonstrated $Ca^{2+}$ is released from bone resorption surfaces. We also showed that the MSCs phenotype, including cell proliferation and migration, changed when the cells were treated with a bone resorption-conditioned medium. These findings suggest that the dynamic changes in $Ca^{2+}$ concentrations in the microenvironments of bone remodeling surfaces modulate MSCs phenotype and thereby contribute to bone regeneration.

The proper concentrations of dextrose and lidocaine in regenerative injection therapy: in vitro study

  • Woo, Min Seok;Park, Jiyoung;Ok, Seong-Ho;Park, Miyeong;Sohn, Ju-Tae;Cho, Man Seok;Shin, Il-Woo;Kim, Yeon A
    • The Korean Journal of Pain
    • /
    • 제34권1호
    • /
    • pp.19-26
    • /
    • 2021
  • Background: Prolotherapy is a proliferation therapy as an alternative medicine. A combination of dextrose solution and lidocaine is usually used in prolotherapy. The concentrations of dextrose and lidocaine used in the clinical field are very high (dextrose 10%-25%, lidocaine 0.075%-1%). Several studies show about 1% dextrose and more than 0.2% lidocaine induced cell death in various cell types. We investigated the effects of low concentrations of dextrose and lidocaine in fibroblasts and suggest the optimal range of concentrations of dextrose and lidocaine in prolotherapy. Methods: Various concentrations of dextrose and lidocaine were treated in NIH-3T3. Viability was examined with trypan blue exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Migration assay was performed for measuring the motile activity. Extracellular signal-regulated kinase (Erk) activation and protein expression of collagen I and α-smooth muscle actin (α-SMA) were determined with western blot analysis. Results: The cell viability was decreased in concentrations of more than 5% dextrose and 0.1% lidocaine. However, in the concentrations 1% dextrose (D1) and 0.01% lidocaine (L0.01), fibroblasts proliferated mildly. The ability of migration in fibroblast was increased in the D1, L0.01, and D1 + L0.01 groups sequentially. D1 and L0.01 increased Erk activation and the expression of collagen I and α-SMA and D1 + L0.01 further increased. The inhibition of Erk activation suppressed fibroblast proliferation and the synthesis of collagen I. Conclusions: D1, L0.01, and the combination of D1 and L0.01 induced fibroblast proliferation and increased collagen I synthesis via Erk activation.

Sanghuangporus sanghuang extract inhibits the proliferation and invasion of lung cancer cells in vitro and in vivo

  • Weike Wang;Jiling Song;Na Lu;Jing Yan;Guanping Chen
    • Nutrition Research and Practice
    • /
    • 제17권6호
    • /
    • pp.1070-1083
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Sanghuangporus sanghuang (SS) has various medicinal effects, including anti-inflammation and anticancer activities. Despite the extensive research on SS, its molecular mechanisms of action on lung cancer are unclear. This study examined the impact of an SS alcohol extract (SAE) on lung cancer using in vitro and in vivo models. MATERIALS/METHODS: Different concentrations of SAE were used to culture lung cancer cells (A549 and H1650). A cell counting kit-8 assay was used to detect the survival ability of A549 and H1650 cells. A scratch assay and transwell cell invasion assay were used to detect the migration rate and invasive ability of SAE. Western blot analysis was used to detect the expression of B-cell lymphoma-2 (Bcl-2), Bcl2-associated X (Bax), cyclin D1, cyclin-dependent kinases 4 (CDK4), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 (p-STAT3). Lung cancer xenograft mice were used to detect the inhibiting ability of SAE in vivo. Hematoxylin and eosin staining and immunohistochemistry were used to detect the effect of SAE on the structural changes to the tumor and the expression of Bcl-2, Bax, cyclin D1, CDK4, STAT3, and p-STAT3 in lung cancer xenograft mice. RESULTS: SAE could inhibit lung cancer proliferation significantly in vitro and in vivo without cytotoxicity. SAE suppressed the viability, migration, and invasion of lung cancer cells in a dose and time-dependent manner. The SAE treatment significantly decreased the proapoptotic Bcl-2/Bax ratio and the expression of pro-proliferative proteins Cyclin D1 and CDK4 in vitro and in vivo. Furthermore, SAE also inhibited STAT3 expression. CONCLUSIONS: SAE reduced the cell viability and suppressed cell migration and invasion in human lung cancer cells. Moreover, SAE also exhibited anti-proliferation effects in vivo. Therefore, SAE may have benefits in cancer therapy.

20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway

  • Lin, Kaili;Liu, Bin;Lim, Sze-Lam;Fu, Xiuqiong;Sze, Stephen C.W.;Yung, Ken K.L.;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • 제44권3호
    • /
    • pp.475-482
    • /
    • 2020
  • Background: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. Methods: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. Results: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in anti-microtubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. Conclusion: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.

Keratinocyte Migration in a Three-Dimensional In Vitro Wound Healing Model Co-Cultured with Fibroblasts

  • Iyer, Kritika;Chen, Zhuo;Ganapa, Teja;Wu, Benjamin M.;Tawil, Bill;Linsley, Chase S.
    • Tissue Engineering and Regenerative Medicine
    • /
    • 제15권6호
    • /
    • pp.721-733
    • /
    • 2018
  • BACKGROUND: Because three-dimensional (3D) models more closely mimic native tissues, one of the goals of 3D in vitro tissue models is to aid in the development and toxicity screening of new drug therapies. In this study, a 3D skin wound healing model comprising of a collagen type I construct with fibrin-filled defects was developed. METHODS: Optical imaging was used to measure keratinocyte migration in the presence of fibroblasts over 7 days onto the fibrin-filled defects. Additionally, cell viability and growth of fibroblasts and keratinocytes was measured using the $alamarBlue^{(R)}$ assay and changes in the mechanical stiffness of the 3D construct was monitored using compressive indentation testing. RESULTS: Keratinocyte migration rate was significantly increased in the presence of fibroblasts with the cells reaching the center of the defect as early as day 3 in the co-culture constructs compared to day 7 for the control keratinocyte monoculture constructs. Additionally, constructs with the greatest rate of keratinocyte migration had reduced cell growth. When fibroblasts were cultured alone in the wound healing construct, there was a 1.3 to 3.4-fold increase in cell growth and a 1.2 to 1.4-fold increase in cell growth for keratinocyte monocultures. However, co-culture constructs exhibited no significant growth over 7 days. Finally, mechanical testing showed that fibroblasts and keratinocytes had varying effects on matrix stiffness with fibroblasts degrading the constructs while keratinocytes increased the construct's stiffness. CONCLUSION: This 3D in vitro wound healing model is a step towards developing a mimetic construct that recapitulates the complex microenvironment of healing wounds and could aid in the early studies of novel therapeutics that promote migration and proliferation of epithelial cells.

H2O2 Inhibits Proliferation and Mediates Suppression of Migration via DLC1/RhoA Signaling in Cancer Cells

  • Ma, Long;Zhu, Wen-Zhen;Liu, Ting-Ting;Fu, Hui-Ling;Liu, Zhao-Jun;Yang, Bing-Wu;Song, Tai-Yu;Li, Guo-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권4호
    • /
    • pp.1637-1642
    • /
    • 2015
  • Background: RhoGTPase-activating proteins (RhoGAPs) regulate RhoGTPases in cells, but whether individual reactive oxygen species (ROS) regulate RhoGAPs is unknown. Our previous published papers have shown that deleted in liver cancer 1 (DLC1) inhibits cancer cell migration by its RhoGAP activity. The present study was designed to explore the role of $H_2O_2$ in regulation of DLC1. Materials and Methods: We treated cells with $H_2O_2$ for 24h and phenotypic changes were analyzed by MTT, RT-PCR, Western blotting, immunofluorescence staining and wound healing assays. Results: $H_2O_2$ downregulated cyclin D1 and cyclin E to inhibit proliferation, and upregulated BAX to induce apoptosis in MCF-7 cells. Compared with non-tumorigenic cells, $H_2O_2$ increased expression of DLC1 and reduced activity of RhoA in cancer cells. Stress fiber production and migration were also suppressed by $H_2O_2$ in MDA-MB-231 cells. Conclusions: Our study suggests that $H_2O_2$ inhibits proliferation through modulation of cell cycle and apoptosis-related genes, and inhibits migration by decreasing stress fibers via DLC1/RhoA signaling.

Water Extracts of Aralia elata Root Bark Enhances Migration and Matrix Metalloproteinases Secretion in Porcine Coronary Artery Endothelial Cells

  • Oh, In-Suk;Han, Ji-Won;Kim, Hwan-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권4호
    • /
    • pp.372-377
    • /
    • 2005
  • Aralia elata is an edible mountain vegetable. Angiogenesis, the formation of new blood vessels, is a process involving migration, proliferation and cell differentiation, as well as the formation of new capillary structures. Matrix metalloproteinases (MMPs) plays an important role in angiogenesis. The development of a functional vascular system requires a variety of growth factors, their receptors, and intracellular signals. This study examines the effects of water extracts from: (i) A. elata root bark (Aralia extracts); (ii) a combination of Aralia extracts and fibroblast growth factors (FGF-2) on cultured porcine coronary artery endothelial cells (PCAECs). Aralia extracts induced the migration of PCAECs, which was inhibited by MMPs inhibitors. Combining Aralia extracts and FGF-2 enhanced the migration and the secretion of MMP-2 and MMP­9 from PCAECs. We postulated that the Aralia extracts, which induced migrating activity in PCAECs, may be accomplished by increased secretion levels of MMP-2 and MMP-9.

miRNA-218 Inhibits Osteosarcoma Cell Migration and Invasion by Down-regulating of TIAM1, MMP2 and MMP9

  • Jin, Jie;Cai, Lin;Liu, Zhi-Ming;Zhou, Xue-Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3681-3684
    • /
    • 2013
  • Deregulated miRNAs participate in osteosarcoma genesis. In this study, the expression of miRNA-218 in human osteosarcomas, adjacent normal tissues and Saos-2 human osteosarcoma cells was first assessed. Then the precise role of miRNA-218 in osteosarcoma cells was investigated. Upon transfection with a miR-218 expression vector, the proliferation of Saos-2 human osteosarcoma cells determined using the ATPlite assay was significantly suppressed, whilw migration of Saos-2 cells detected by wound healing and invasion determined using transwells were dramatically inhibited. Potential target genes of miR-218 were predicted and T-cell lymphoma invasion and metastasis 1 (TIAM1) and matrix metalloproteinase 2 (MMP2) and 9 (MMP9) were identified. This was confirmed by western blotting, which showed that miR-218 expression inhibited TIAM1, MMP2 and MMP9 protein expression. Collectively, these data suggest that miR-218 acts as a tumor suppressor in osteosarcomas by down-regulating TIAM1, MMP2 and MMP9 expression.

Inhibitory Effects of Cyrtopodion scabrum Extract on Growth of Human Breast and Colorectal Cancer Cells

  • Amiri, Ahmad;Namavari, Mehdi;Rashidi, Mojtaba;Fahmidehkar, Mohammad Ali;Seghatoleslam, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.565-570
    • /
    • 2015
  • Breast and colorectal cancers rank high in Iran as causes of mortality. Most of the current treatments are expensive and non-specific. The potential anticancer properties of common home gecko, Cyrtopodion scabrum, were investigated in this study. The effects of C. scabrum extract on proliferation, viability and migration of the colorectal cancer (SW-742), breast cancer (MCF-7) and normal (MSC) cell lines were investigated using MTT and in vitro wound healing assay. $IC_{50}$ values calculated for the extract were $559{\pm}28.9{\mu}g/mL$ for MCF-7 and $339{\pm}11.3{\mu}g/mL$ for SW-742. No toxic effects on the normal control cells were observed. MCF-7 and SW-742 cell growth was inhibited by 32.6% and 62%, under optimum conditions, compared to the untreated control cells. The extract also decreased the motility and migration ability of both cancer cell lines, with no significant effects on the normal control cells. Data suggest C. scabrum extract as a useful natural resource for targeting cancer cells specifically.