DOI QR코드

DOI QR Code

Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression

  • Lee, Mi Nam (Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University) ;
  • Hwang, Hee-Su (Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University) ;
  • Oh, Sin-Hye (Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University) ;
  • Roshanzadeh, Amir (School of Biological Sciences and Biotechnology, Chonnam National University) ;
  • Kim, Jung-Woo (Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University) ;
  • Song, Ju Han (Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University) ;
  • Kim, Eung-Sam (Department of Biological Sciences, Chonnam National University) ;
  • Koh, Jeong-Tae (Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University)
  • Received : 2018.02.21
  • Accepted : 2018.07.12
  • Published : 2018.11.30

Abstract

Supplementation of mesenchymal stem cells (MSCs) at sites of bone resorption is required for bone homeostasis because of the non-proliferation and short lifespan properties of the osteoblasts. Calcium ions ($Ca^{2+}$) are released from the bone surfaces during osteoclast-mediated bone resorption. However, how elevated extracellular $Ca^{2+}$ concentrations would alter MSCs behavior in the proximal sites of bone resorption is largely unknown. In this study, we investigated the effect of extracellular $Ca^{2+}$ on MSCs phenotype depending on $Ca^{2+}$ concentrations. We found that the elevated extracellular $Ca^{2+}$ promoted cell proliferation and matrix mineralization of MSCs. In addition, MSCs induced the expression and secretion of osteopontin (OPN), which enhanced MSCs migration under the elevated extracellular $Ca^{2+}$ conditions. We developed in vitro osteoclast-mediated bone resorption conditions using mouse calvaria bone slices and demonstrated $Ca^{2+}$ is released from bone resorption surfaces. We also showed that the MSCs phenotype, including cell proliferation and migration, changed when the cells were treated with a bone resorption-conditioned medium. These findings suggest that the dynamic changes in $Ca^{2+}$ concentrations in the microenvironments of bone remodeling surfaces modulate MSCs phenotype and thereby contribute to bone regeneration.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Feng, X. &McDonald, J. M. Disorders of bone remodeling. Annu Rev. Pathol. 6, 121-145 (2011). https://doi.org/10.1146/annurev-pathol-011110-130203
  2. Nakashima, T., Hayashi, M. & Takayanagi, H. Newinsights into osteoclastogenic signaling mechanisms. Trends Endocrinol. Metab. 23, 582-590 (2012). https://doi.org/10.1016/j.tem.2012.05.005
  3. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259-272 (2012). https://doi.org/10.1016/j.stem.2012.02.003
  4. Kitaori, T. et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60, 813-823 (2009). https://doi.org/10.1002/art.24330
  5. Tewari, D. et al. Ovariectomized rats with established osteopenia have diminished mesenchymal stem cells in the bone marrow and impaired homing, osteoinduction and bone regeneration at the fracture site. Stem Cell Rev. 11, 309-321 (2015). https://doi.org/10.1007/s12015-014-9573-5
  6. Crane, J. L. & Cao, X. Bone marrow mesenchymal stem cells and TGF-${\beta}$ signaling in bone remodeling. J. Clin. Invest 124, 466-472 (2014). https://doi.org/10.1172/JCI70050
  7. Crane, J. L. & Cao, X. Function of Matrix IGF-1 in coupling bone resorption and formation. J. Mol. Med. 92, 107-115 (2014). https://doi.org/10.1007/s00109-013-1084-3
  8. Kular, J., Tickner, J., Chim, S. M. & Xu, J. An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 45, 863-873 (2012). https://doi.org/10.1016/j.clinbiochem.2012.03.021
  9. Bismar, H. et al. Transforming growth factor ${\beta}$ (TGF-${\beta}$) levels in the conditioned media of human bone cells: relationship to donor age, bone volume, and concentration of TGF-${\beta}$ in human bone matrix in vivo. Bone 24, 565-569 (1999). https://doi.org/10.1016/S8756-3282(99)00082-4
  10. Linkhart, T. A., Mohan, S. & Baylink, D. J. Growth factors for bone growth and repair: IGF, TGF${\beta}$ and BMP. Bone 19 (c), S1-S12 (1996). https://doi.org/10.1016/S8756-3282(96)00138-X
  11. Seyedin, S. M., Thomas, T. C., Thompson, A. Y., Rosen, D. M. & Piez, K. A. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc. Natl Acad. Sci. U.S.A. 82, 2267-2271 (1985). https://doi.org/10.1073/pnas.82.8.2267
  12. Tang, Y. et al. TGF-${\beta}$1-induced migration of bone mesenchymal stem cells couples bone resorption and formation. Nat. Med. 15, 757-765 (2009). https://doi.org/10.1038/nm.1979
  13. Ponte, A. L. et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737-1745 (2007). https://doi.org/10.1634/stemcells.2007-0054
  14. Silver, I. A., Murrills, R. J. & Etherington, D. J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175, 266-276 (1988). https://doi.org/10.1016/0014-4827(88)90191-7
  15. Sun, X., Kishore, V., Fites, K. & Akkus, O. Osteoblasts detect pericellular calcium concentration increase via neomycin-sensitive voltage gated calcium channels. Bone 51, 860-867 (2012). https://doi.org/10.1016/j.bone.2012.08.116
  16. Chai, Y. C. et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 8, 3876-3887 (2012). https://doi.org/10.1016/j.actbio.2012.07.002
  17. Hu, F. et al. Elevation of extracellular Ca(2+) induces store-operated calcium entry via calcium-sensing receptors: a pathway contributes to the proliferation of osteoblasts. PLoS ONE 9, e107217 (2014). https://doi.org/10.1371/journal.pone.0107217
  18. Maeno, S. et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26, 4847-4855 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.006
  19. Nakamura, S. et al. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng. Part A 16, 2467-2473 (2010). https://doi.org/10.1089/ten.tea.2009.0337
  20. Barradas, A. M. et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33, 3205-3215 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.020
  21. Gonzalez-Vazquez, A., Planell, J. A. & Engel, E. Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells. Acta Biomater. 10, 2824-2833 (2014). https://doi.org/10.1016/j.actbio.2014.02.004
  22. Hashimoto, R. et al. Increased extracellular and intracellular $Ca^{2+}$lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms. Biochem Biophys. Res. Commun. 457, 647-652 (2015). https://doi.org/10.1016/j.bbrc.2015.01.042
  23. Lei, Q. et al. Proteomic analysis of the effect of extracellular calcium ions on human mesenchymal stem cells: Implications for bone tissue engineering. Chem. Biol. Interact. 233, 139-146 (2015). https://doi.org/10.1016/j.cbi.2015.03.021
  24. Mellor, L. F. et al. Extracellular calcium modulates chondrogenic and osteogenic differentiation of human adipose-derived stem cells: a novel approach for osteochondral tissue engineering using a single stem cell source. Tissue Eng. Part A 21, 2323-2333 (2015). https://doi.org/10.1089/ten.tea.2014.0572
  25. Jeong, B. C., Kang, I. H., Hwang, Y. C., Kim, S. H. & Koh, J. T. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death Dis. 5, e1532 (2014). https://doi.org/10.1038/cddis.2014.485
  26. Lee, M. N. et al. FGF2 stimulates COUP-TFII expression via the MEK1/2 pathway to inhibit osteoblast differentiation in C3H10T1/2 cells. PLoS One 11, e0159234 (2016). https://doi.org/10.1371/journal.pone.0159234
  27. Cheng, S. et al. Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro. Hum. Cell 26, 114-120 (2013). https://doi.org/10.1007/s13577-012-0041-8
  28. Kahles, F., Findeisen, H. M. & Bruemmer, D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab. 3, 384-393 (2014). https://doi.org/10.1016/j.molmet.2014.03.004
  29. Wei, R., Wong, J. P. C. & Kwok, H. F. Osteopontin-a promising biomarker for cancer therapy. J. Cancer 8, 2173-2183 (2017). https://doi.org/10.7150/jca.20480
  30. Chen, Q. et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 32, 327-337 (2014). https://doi.org/10.1002/stem.1567
  31. Frederick, T. J., Min, J., Altieri, S. C., Mitchell, N. E. & Wood, T. L. Synergistic induction of cyclin D1 in oligodendrocyte progenitor cells by IGF-I and FGF-2 requires differential stimulation of multiple signaling pathways. Glia 55, 1011-1022 (2007). https://doi.org/10.1002/glia.20520
  32. Denhardt, D. T. & Noda, M. Osteopontin expression and function: Role in bone remodeling. J. Cell Biochem Suppl. 30-31, 92-102 (1998).
  33. Hu, D. D., Lin, E. C., Kovach, N. L., Hoyer, J. R. & Smith, J. W. A biochemical characterization of the binding of osteopontin to integrins ${\alpha}$v${\beta}$1 and ${\alpha}$v${\beta}$5. J. Biol. Chem. 270, 26232-26238 (1995). https://doi.org/10.1074/jbc.270.44.26232
  34. Wang, K. X. & Denhardt, D. T. Osteopontin: Role in immune regulation and stress responses. Cytokine Growth Factor Rev. 19, 333-345 (2008). https://doi.org/10.1016/j.cytogfr.2008.08.001
  35. Zou, C. et al. Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via Integrin ${\beta}$1, FAK, and ERK pathways. Cell Biochem Biophys. 65, 455-462 (2013). https://doi.org/10.1007/s12013-012-9449-8
  36. Zou, C., Song, G., Luo, Q., Yuan, L. & Yang, L. Mesenchymal stem cells require integrin ${\beta}$1 for directed migration induced by osteopontin in vitro. Vitr. Cell Dev. Biol. Anim. 47, 241-250 (2011). https://doi.org/10.1007/s11626-010-9377-0
  37. Hu, D. D., Hoyer, J. R. & Smith, J. W. Ca2+ suppresses cell adhesion to osteopontin by attenuating binding affinity for integrin ${\alpha}$v${\beta}$3. J. Bio Chem. 270, 9917-9925 (1995). https://doi.org/10.1074/jbc.270.17.9917
  38. Goltzman, D. & Hendy, G. N. The calcium-sensing receptor in bone-mechanistic and therapeutic insights. Nat. Rev. Endocrinol. 11, 298-307 (2015). https://doi.org/10.1038/nrendo.2015.30
  39. Hofer, A. M. & Brown, E. M. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 4, 530-538 (2003). https://doi.org/10.1038/nrm1154
  40. Tharmalingam, S. & Hampson, D. R. The calcium-sensing receptor and integrins in cellular differentiation and migration. Front Physiol. 7, 190 (2016).
  41. Chang, W., Tu, C., Chen, T. H., Bikle, D. & Shoback, D. The extracellular calciumsensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal 1, ra1 (2008).
  42. Marie, P. J. The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone 46, 571-576 (2010). https://doi.org/10.1016/j.bone.2009.07.082
  43. Dvorak, M. M. & Riccardi, D. Ca2+as an extracellular signal in bone. Cell Calcium 35, 249-255 (2004). https://doi.org/10.1016/j.ceca.2003.10.014
  44. Dvorak-Ewell, M. M. et al. Osteoblast extracellular Ca(2+)-sensing receptor regulates bone development, mineralization and turnover. J. Bone Miner. Res 26, 2935-2947 (2011). https://doi.org/10.1002/jbmr.520
  45. Gabusi, E. et al. Extracellular calcium chronically induced human osteoblasts effects: Specific modulation of osteocalcin and collagen type XV. J. Cell Physiol. 227, 3151-3161 (2012). https://doi.org/10.1002/jcp.24001
  46. Tada, H. et al. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells. Biochem Biophys. Res Commun. 394, 1093-1097 (2010). https://doi.org/10.1016/j.bbrc.2010.03.135
  47. Wagner, A. S. et al. Osteogenic differentiation capacity of human mesenchymal stromal cells in response to extracellular calcium with special regard to connexin 43. Ann. Anat. 209, 18-24 (2017). https://doi.org/10.1016/j.aanat.2016.09.005
  48. Jung, H., Best, M. & Akkus, O. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via Ltype and T-type voltage-gated calcium channels. Bone 76, 88-96 (2015). https://doi.org/10.1016/j.bone.2015.03.014
  49. Cummings, L. J., Snyder, M. A. and Brisack, K. Methods in enzymology. in Protein Chromatography on Hydroxyapatite Columns (eds Burgess, R. R. & Deutscher, M. P.) Ch. 24, 387-404 (Academic Press, San Diego, CA, 2009).
  50. Yang, H., Curinga, G. & Giachelli, C. M. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int. 66, 2293-2299 (2004). https://doi.org/10.1111/j.1523-1755.2004.66015.x
  51. Marcondes, M. C. G., Poling, M., Watry, D. D., Hall, D. & Fox, H. S. In vivo osteopontin-induced macrophage accumulation is dependent on CD44 expression. Cell. Immunol. 254, 56-62 (2008). https://doi.org/10.1016/j.cellimm.2008.06.012
  52. David, T. D. & Masaki, N. Osteopontin expression and function: role in bone remodeling. J. Cell Biochem Suppl. 30,31, 92-102 (1998). https://doi.org/10.1002/(SICI)1097-4644(1998)72:30/31+<92::AID-JCB13>3.0.CO;2-A
  53. Gross, T. S., King, K. A., Rabaia, N. A., Pathare, P. & Srinvasan, S. Upregulation of Osteopontin by osteocytes deprived of mechanical loading or oxygen. J. Bone Miner. Res 20, 250-256 (2005).
  54. Kidd, L. J. et al. Temporal pattern of gene expression and histology of stress fracture healing. Bone 46, 369-378 (2010). https://doi.org/10.1016/j.bone.2009.10.009

Cited by

  1. A 3D Printable and Bioactive Hydrogel Scaffold to Treat Traumatic Brain Injury vol.29, pp.39, 2018, https://doi.org/10.1002/adfm.201904450
  2. Aggregation of Nanosized Hydroxyapatite Particles and Inhibition of Cell Adhesion on this Bio-Active Material as Key Factors that Limit its Biointegration vol.64, pp.5, 2018, https://doi.org/10.1134/s0006350919050154
  3. Defect-related luminescent nanostructured hydroxyapatite promotes mineralization through both intracellular and extracellular pathways vol.9, pp.62, 2019, https://doi.org/10.1039/c9ra06629b
  4. Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration vol.2, pp.11, 2018, https://doi.org/10.1021/acsabm.9b00859
  5. Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization vol.21, pp.1, 2018, https://doi.org/10.3390/ijms21010198
  6. Biocompatibility of Biodentine™ ® with Periodontal Ligament Stem Cells: In Vitro Study vol.8, pp.1, 2018, https://doi.org/10.3390/dj8010017
  7. Biomedical cell product model for preclinical studies carried out on a large laboratory animal vol.22, pp.1, 2018, https://doi.org/10.15825/1995-1191-2020-1-142-156
  8. Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation vol.108, pp.4, 2018, https://doi.org/10.1002/jbm.b.34492
  9. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis vol.8, pp.9, 2020, https://doi.org/10.1039/d0bm00140f
  10. Poly(ester amide)-Bioactive Glass Hybrid Biomaterials for Bone Regeneration and Biomolecule Delivery vol.3, pp.6, 2020, https://doi.org/10.1021/acsabm.0c00257
  11. Bone forming ability of recombinant human collagen peptide granules applied with β‐tricalcium phosphate fine particles vol.108, pp.7, 2020, https://doi.org/10.1002/jbm.b.34632
  12. CaSR-Mediated hBMSCs Activity Modulation: Additional Coupling Mechanism in Bone Remodeling Compartment vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010325
  13. Changes in the extracellular microenvironment and osteogenic responses of mesenchymal stem/stromal cells induced by in vitro direct electrical stimulation vol.12, pp.None, 2018, https://doi.org/10.1177/2041731420974147
  14. In vitro evaluation of novel titania‐containing borate bioactive glass scaffolds vol.109, pp.2, 2018, https://doi.org/10.1002/jbm.a.37012
  15. Zoledronic Acid-Loaded β-TCP Inhibits Tumor Proliferation and Osteoclast Activation: Development of a Functional Bone Substitute for an Efficient Osteosarcoma Treatment vol.22, pp.4, 2018, https://doi.org/10.3390/ijms22041889
  16. Calcium channels and their role in regenerative medicine vol.13, pp.4, 2018, https://doi.org/10.4252/wjsc.v13.i4.260
  17. Cytotoxicity and cell response of preosteoblast in calcium sulfate-augmented PMMA bone cement vol.16, pp.5, 2018, https://doi.org/10.1088/1748-605x/ac1ab5
  18. Nano and micro-forms of calcium titanate: Synthesis, properties and application vol.8, pp.None, 2018, https://doi.org/10.1016/j.oceram.2021.100177
  19. Designing a novel CaO-MgO-SiO2-based multiphase bioceramic with adjustable ion dissolution behavior for enhancing osteogenesis vol.3, pp.None, 2022, https://doi.org/10.1016/j.smaim.2021.09.002
  20. Alveolar ridge preservation in beagle dogs using carbonate apatite bone substitute vol.48, pp.2, 2018, https://doi.org/10.1016/j.ceramint.2021.09.260