• Title/Summary/Keyword: prokaryotes

Search Result 80, Processing Time 0.023 seconds

Psychrophilic Extremophiles from Antarctica: Biodiversity and Biotechnological Potential

  • Bowman John P.;Abell Gyu C.J.;Nichols Carol A. Mancuso
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.221-230
    • /
    • 2005
  • Recently there has been a rapid accumulation of knowledge of microbial life in cold and frozen ecosystems. This understanding has revealed the extensive diversity of psychrophilic prokaryotes. Cultivation-based and molecular-based surveys have been performed in Antarctic habitats ranging from glacial ice to continental shelf sediments. Results indicate that psychrophilic taxa permeate throughout the Bacteria while they represent a more mysterious element of diversity in the Archaea owing to a notable lack of cultured strains. In certain cold climate ecosystems the diversity of psychrophilic populations reach levels comparable to the richest temperate equivalents. Within these communities must exist tremendous genetic diversify that is potentially of fundamental and of practical value. So far this genetic pool has been hardly explored. Only recently have genomic data become available for various psychrophilic prokaryotes and more is required. This owes to the fact that psychrophilic microbes possess manifold mechanisms for cold adaptations, which not only Provide enhanced survival and Persistence but Probably also contributes to niche specialisation. These mechanisms, including cold-active and ice-active proteins, polyunsaturated lipids and exopolysaccharides also have a great interest to biotechnologists.

Metabolic Pathways of 1309 Prokaryotic Species in Relation to COGs (COG pathways에서 원핵생물 1,309종의 대사경로)

  • Lee, Dong-Geun;Kim, Ju-Hui;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.249-255
    • /
    • 2022
  • Metabolism is essential for survival and reproduction, and there is a metabolic pathways entry in the clusters of orthologous groups of proteins (COGs) database, updated in 2020. In this study, the metabolic pathways of 1309 prokaryotes were analyzed using COGs. There were 822 COGs associated with 63 metabolic pathways, and the mean for each taxon was between 200.50 (mollicutes) and 527.07 (cyanobacteria) COGs. The metabolic pathway composition ratio (MPCR) was defined as the number of COGs present in one genome in relation to the total number of COGs constituting each metabolic pathway, and the number of pathways with 100% MPCR ranged from 0 to 26 in each prokaryote. Among 1309 species, the 100% MPCR pathways included murein biosynthesis associated with cell wall synthesis (922 species); glycine cleavage (918); and ribosomal 30S subunit synthesis (903). The metabolic pathways with 0% MPCR were those involving photosystem I (1263 species); archaea/vacuolar-type ATP synthase (1028); and Na+-translocation NADH dehydrogenase (976). Depending on the prokaryote, three to 49 metabolic pathways could not be performed at all. The sequence of most highly conserved metabolic pathways was ribosome 30S subunit synthesis (96.1% of 1309 species); murein biosynthesis (86.8%); arginine biosynthesis (80.4%); serine biosynthesis (80.3%); and aminoacyl-tRNA synthesis (82.2%). Protein and cell wall synthesis have been shown to be important metabolic pathways in prokaryotes, and the results of this study of COGs related to such pathways can be utilized in, for example, the development of antibiotics and artificial cells.

Gill Tissue Reactions to an Epitheliocystis Infection in Cultured Red Seabream, Pagrus major

  • Syasina, Iraida;Park, In-Seok;Kim, Jong Min
    • Journal of fish pathology
    • /
    • v.17 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • Tissue reactions in gills of cultured red seabream, Pagrus major, toan epitheliocystis infection are described. Basophilic intracellular inclusions in gills contained prokaryotes, most probably a Chlamydia-like organisms according to morphological characteristic. A few types of tissue reaction were found around the inclusions: encapsulation, epithelial hyperplasia, lamellar fusion, and inflammation. It was considered that eosinophilic granule cells and macrophages might take part in defense reactions against this prokaryotic organism.

재조합 E. coli로부터 발현되는 철단백질의 분리 및 정제

  • Park, Hyeon-Gyu;Lee, Ji-Won;Kim, In-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.697-700
    • /
    • 2001
  • Iron is an essential nutrient for most organisms, which supplied to them in a protein-iron complex known as ferritin. Ferritins are multimeric proteins found in prokaryotes, plants and animals. They are consisted of spherical shell of 24 subunits defining a cavity of about 8nm in diameter, where an iron core is laid down. Expression of ferritin in recombinant E. coli at $37^{\circ}C$ led to the accumulation of recombinant ferritin. Insoluble form of ferritin was separated from disrupted cells, followed by various primary separation steps with two kinds of buffers. Collected samples from the primary steps were purified by DEAE-cellulose gels packed in a column. The fractions from the DEAE column were assayed to gain the amount and the purity of ferritin by using HPLC and SDS-PAGE.

  • PDF

Molecular Cloning, Expression and Functional Characterization of a Peroxiredoxin from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Kang sun Ryu;Kim, Jin-Won;Ahn, Mi-Young;Kwang Sik;Jin, Byung-Rae
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.130-133
    • /
    • 2003
  • Peroxiredoxins are a family of antioxidant proteins ubiquitously found in all living organisms. A type of peroxidase enzyme, named thioredoxin peroxidase (TPx), that reduces $H_2O$$_2$ with the use of electrons from thioredoxin and contains two essential cysteines was identified in a wide variety of organisms ranging from prokaryotes to mammals. TPx homologs, termed peroxiredoxin (Prx), have also been identified and include several proteins, designated 1-Cys Prx, that contain only one conserved cysteine. (omitted)

  • PDF

PC-Based Hybrid Grid Computing for Huge Biological Data Processing

  • Cho, Wan-Sup;Kim, Tae-Kyung;Na, Jong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.569-579
    • /
    • 2006
  • Recently, the amount of genome sequence is increasing rapidly due to advanced computational techniques and experimental tools in the biological area. Sequence comparisons are very useful operations to predict the functions of the genes or proteins. However, it takes too much time to compare long sequence data and there are many research results for fast sequence comparisons. In this paper, we propose a hybrid grid system to improve the performance of the sequence comparisons based on the LanLinux system. Compared with conventional approaches, hybrid grid is easy to construct, maintain, and manage because there is no need to install SWs for every node. As a real experiment, we constructed an orthologous database for 89 prokaryotes just in a week under hybrid grid; note that it requires 33 weeks on a single computer.

  • PDF

Polyphosphate Kinase Affects Oxidative Stress Response by Modulating cAMP Receptor Protein and rpoS Expression in Salmonella Typhimurium

  • Cheng, Yuanyuan;Sun, Baolin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1527-1535
    • /
    • 2009
  • Polyphosphate (polyP) plays diverse physiological functions in prokaryotes and eukaryotes, but most of their detailed mechanisms are still obscure. Here, we show that deletion of polyphosphate kinase (PPK), the principal enzyme responsible for synthesis of polyP, resulted in augmented expression of cAMP receptor protein (CRP) and rpoS and lowered $H_2O_2$ sensitivity in Salmonella Typhimurium ATCC14028. The binding of cAMP-CRP complex to rpoS promoter and further stimulation of its transcription were proved through electrophoretic mobility shift assay, lacZ fusion, and exogenous cAMP addition, respectively. The rpoS expression increased in cpdA (cAMP phosphodiesterase coding gene) mutant, further suggesting that cAMP-CRP upregulated rpoS expression. These results demonstrate that PPK affects oxidative stress response by modulating crp and rpoS expression in S. Typhimurium.

The Role of Cytoskeletal Elements in Shaping Bacterial Cells

  • Cho, Hongbaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.307-316
    • /
    • 2015
  • Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

Eukaryotic DNAJ/K Database: A Comprehensive Phylogenomic Analysis Platform for the DNAJ/K Family

  • Cheong, Kyeongchae;Choi, Jaehyuk;Choi, Jaeyoung;Park, Jongsun;Jang, Suwang;Lee, Yong-Hwan
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.52-54
    • /
    • 2013
  • Proteins in DNAJ/K families are ubiquitous, from prokaryotes to eukaryotes, and function as molecular chaperones. For systematic phylogenomics of the DNAJ/K families, we developed the Eukaryotic DNAJ/K Database (EDD). A total of 12,908 DNAJs and 4,886 DNAKs were identified from 339 eukaryotic genomes in the EDD. Kingdom-wide comparison of DNAJ/K families provides new insights on the evolutionary relationship within these families. Empowered by 'class', 'cluster', and 'taxonomy' browsers and the 'favorite' function, the EDD provides a versatile platform for comparative genomic analyses of DNAJ/K families.