• Title/Summary/Keyword: projective

Search Result 598, Processing Time 0.022 seconds

WEIGHTED PROJECTIVE LINES WITH WEIGHT PERMUTATION

  • Han, Lina;Wang, Xintian
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.219-236
    • /
    • 2021
  • Let �� be a weighted projective line defined over the algebraic closure $k={\bar{\mathbb{F}}}_q$ of the finite field ��q and σ be a weight permutation of ��. By folding the category coh-�� of coherent sheaves on �� in terms of the Frobenius twist functor induced by σ, we obtain an ��q-category, denoted by coh-(��, σ; q). We then prove that coh-(��, σ; q) is derived equivalent to the valued canonical algebra associated with (��, σ).

A NOTE ON ARTINIAN LOCAL RINGS

  • Hu, Kui;Kim, Hwankoo;Zhou, Dechuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1317-1325
    • /
    • 2022
  • In this note, we prove that an Artinian local ring is G-semisimple (resp., SG-semisimple, 2-SG-semisimple) if and only if its maximal ideal is G-projective (resp., SG-projective, 2-SG-projective). As a corollary, we obtain the global statement of the above. We also give some examples of local G-semisimple rings whose maximal ideals are n-generated for some positive integer n.

ON STUDY OF f-APPROXIMATION PROBLEMS AND σ-INVOLUTORY VARIATIONAL INEQUALITY PROBLEMS

  • Mitra, Siddharth;Das, Prasanta Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.223-232
    • /
    • 2022
  • The purpose of the paper is to define f-projection operator to develop the f-projection method. The existence of a variational inequality problem is studied using fixed point theorem which establishes the existence of f-projection method. The concept of ρ-projective operator and σ-involutory operator are defined with suitable examples. The relation in between ρ-projective operator and σ-involutory operator are shown. The concept of σ-involutory variational inequality problem is defined and its existence theorem is also established.

THE u-S-GLOBAL DIMENSIONS OF COMMUTATIVE RINGS

  • Wei Qi;Xiaolei Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1523-1537
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. First, we introduce and study the u-S-projective dimension and u-S-injective dimension of an R-module, and then explore the u-S-global dimension u-S-gl.dim(R) of a commutative ring R, i.e., the supremum of u-S-projective dimensions of all R-modules. Finally, we investigate u-S-global dimensions of factor rings and polynomial rings.

SOME ONE-DIMENSIONAL NOETHERIAN DOMAINS AND G-PROJECTIVE MODULES

  • Kui Hu;Hwankoo Kim;Dechuan Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1453-1461
    • /
    • 2023
  • Let R be a one-dimensional Noetherian domain with quotient field K and T be the integral closure of R in K. In this note we prove that if the conductor ideal (R :K T) is a nonzero prime ideal, then every finitely generated reflexive (and hence finitely generated G-projective) R-module is isomorphic to a direct sum of some ideals.

SPACETIMES ADMITTING DIVERGENCE FREE m-PROJECTIVE CURVATURE TENSOR

  • Uday Chand De;Dipankar Hazra
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.201-210
    • /
    • 2024
  • This paper is concerned with the study of spacetimes satisfying div 𝓜 = 0, where "div" denotes the divergence and 𝓜 is the m-projective curvature tensor. We establish that a perfect fluid spacetime with div 𝓜 = 0 is a generalized Robertson-Walker spacetime and vorticity free; whereas a four-dimensional perfect fluid spacetime becomes a Robertson-Walker spacetime. Moreover, we establish that a Ricci recurrent spacetime with div 𝓜 = 0 represents a generalized Robertson-Walker spacetime.

ON OVERRINGS OF GORENSTEIN DEDEKIND DOMAINS

  • Hu, Kui;Wang, Fanggui;Xu, Longyu;Zhao, Songquan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.991-1008
    • /
    • 2013
  • In this paper, we mainly discuss Gorenstein Dedekind do-mains (G-Dedekind domains for short) and their overrings. Let R be a one-dimensional Noetherian domain with quotient field K and integral closure T. Then it is proved that R is a G-Dedekind domain if and only if for any prime ideal P of R which contains ($R\;:_K\;T$), P is Gorenstein projective. We also give not only an example to show that G-Dedekind domains are not necessarily Noetherian Warfield domains, but also a definition for a special kind of domain: a 2-DVR. As an application, we prove that a Noetherian domain R is a Warfield domain if and only if for any maximal ideal M of R, $R_M$ is a 2-DVR.

A New Solution for Projective Reconstruction Based on Coupled Line Cameras

  • Lee, Joo-Haeng
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.939-942
    • /
    • 2013
  • We provide a new solution for the projective reconstruction problem based on coupled line cameras (CLCs) and their geometric properties. The proposed solution is composed of a series of optimized steps, and each step is more efficient than those of the initial solution proposed in [1]. We also give a new determinant condition for rectangle determination, which leads to less ambiguity in implementation. The key steps of the proposed solution can be represented with more compact analytic equations due to the intuitive geometric interpretations of the projective reconstruction problem based on CLCs: the center of projection corresponds to the intersection point of the two solution circles of each line camera involved.

Pointwise Projective Modules and Some Related Modules

  • NAOUM-ADIL, GHASAN;JAMIL-ZEANA, ZAKI
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.471-480
    • /
    • 2003
  • Let $\mathcal{R}$ be a commutative ring with 1, and Let M be a (left) R-module. M is said to be pointwise projective if for each epimorphism ${\alpha}:\mathcal{A}{\rightarrow}\mathcal{B}$, where A and $\mathcal{B}$ are any $\mathcal{R}$-modules, and for each homomorphism ${\beta}:\mathcal{M}{\rightarrow}\mathcal{B}$, then for every $m{\in}\mathcal{M}$, there exists a homomorphism ${\varphi}:\mathcal{M}{\rightarrow}\mathcal{A}$, which may depend on m, such that ${\alpha}{\circ}{\varphi}(m)={\beta}(m)$. Our mean concern in this paper is to study the relations between pointwise projectivemodules with cancellation modules and its geeralization.

  • PDF

BASICALLY DISCONNECTED SPACES AND PROJECTIVE OBJECTS

  • Kim, Chang-Il
    • The Pure and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2002
  • In this Paper, we will show that every basically disconnected space is a projective object in the category $Tych_{\sigma}$ of Tychonoff spaces and $_{\sigma}Z^{#}$ -irreducible maps and that if X is a space such that ${\Beta} {\Lambda} X={\Lambda} {\Beta} X$, then X has a projective cover in $Tych_{\sigma}$. Moreover, observing that for any weakly Linde1of space, ${\Lambda} X : {\Lambda} X\;{\longrightarrow}\;X$ is $_{\sigma}Z^{#}$-irreducible, we will show that the projective objects in $wLind_{\sigma}$/ of weakly Lindelof spaces and $_{\sigma}Z^{#}$-irreducible maps are precisely the basically disconnected spaces.

  • PDF