• Title/Summary/Keyword: progressive mathematization

Search Result 2, Processing Time 0.016 seconds

Guided Reinvention of Euler Algorithm: -An Analysis of Progressive Mathematization in RME-Based Differential Equations Course- (오일러 알고리즘의 안내된 재 발명 -RME 기반 미분 방정식 수업에서 점진적 수학화 과정 분석-)

  • 권오남;주미경;김영신
    • The Mathematical Education
    • /
    • v.42 no.3
    • /
    • pp.387-402
    • /
    • 2003
  • Realistic Mathematics Education (RME) focuses on guided reinvention through which students explore experientially realistic context problems to develop informal problem solving strategies and solutions. This research applied this philosophy of RME to design a differential equation course at a university level. In particular, the course encouraged the students of the course to use numerical methods to solve differential equations. In this context, the purpose of this research was to describe the developmental process in which the students constructed and reinvented Euler algorithm in the class. For the purpose, this paper will present the didactical principle of RME and describe the process of developmental research to investigate the inferential process of students in solving the first order differential equation numerically. Finally, the qualitative analysis of the students' reasoning and use of symbols reveals how the students reinvent Euler algorithm under the didactical principle of guided reinvention. In this research, it has been found that the students developed deep understanding of Euler algorithm in the class. Moreover, it has been shown that the experience of doing mathematics in the course had a positive impact on students' mathematical belief and attitude. These findings imply that the didactical principle of RME can be applied to design university mathematical courses and in general, provide a perspective on how to reform mathematics curriculum at a university level.

  • PDF

A Study on the Design and Implementation of Mathematics and Science Integrated Instruction (수학과학통합교육의 설계 및 실행에 대한 연구)

  • Lee, Hei-Sook;Rim, Hae-Mee;Moon, Jong-Eun
    • The Mathematical Education
    • /
    • v.49 no.2
    • /
    • pp.175-198
    • /
    • 2010
  • To understand natural or social phenomena, we need various information, knowledge, and thought skills. In this context, mathematics and sciences provide us with excellent tools for that purpose. This explains the reasons why there is always significant emphasis on mathematics and sciences in school education; some of the general goals in school education today are to illustrate physical phenomena with mathematical tools based on scientific consideration, to encourage students understand the mathematical concepts implied in the phenomena, and provide them with ability to apply what they learned to the real world problems. For the mentioned goals, we extract six fundamental principles for the integrated mathematics and science education (IMSE) from literature review and suggest a instructional design model. This model forms a fundamental of a case study we performed to which the IMSE was applied and tested to collect insights for design and practice. The case study was done for 10 students (2 female students, 8 male ones) at a coeducational high school in Seoul, the first semester 2009. Educational tools including graphic calculator(Voyage200) and motion detector (CBR) were utilized in the class. The analysis result for the class show that the students have successfully developed various mathematical concepts including the rate of change, the instantaneous rate of change, and derivatives based on the physical concepts like velocity, accelerate, etc. In the class, they described the physical phenomena with mathematical expressions and understood the motion of objects based on the idea of derivatives. From this result, we conclude that the IMSE builds integrated knowledge for the students in a positive way.