• Title/Summary/Keyword: programmed Death-1

Search Result 174, Processing Time 0.031 seconds

T-Cell Immunoglobulin Mucin 3 Expression on Tumor Infiltrating Lymphocytes as a Positive Prognosticator in Triple-Negative Breast Cancer

  • Byun, Kyung Do;Hwang, Hyo Jun;Park, Ki Jae;Kim, Min Chan;Cho, Se Heon;Ju, Mi Ha;Lee, Jin Hwa;Jeong, Jin Sook
    • Journal of Breast Cancer
    • /
    • v.21 no.4
    • /
    • pp.406-414
    • /
    • 2018
  • Purpose: T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) is an emerging immune response molecule related to T-cell anergy. There has been tremendous interest in breast cancer targeting immune checkpoint molecules, especially in the triple-negative breast cancer (TNBC). This study was designed to investigate TIM-3 expression on tumor infiltrating lymphocytes (TILs), its relationships with clinicopathological parameters and expression of programmed death receptor 1 (PD-1)/programmed death receptor ligand 1 (PD-L1), and its prognostic role. Methods: Immunohistochemistry on tissue microarray blocks produced from 109 samples of invasive ductal carcinoma type TNBC was performed with antibodies toward TIM-3, PD-1, PD-L1 and breast cancer-related molecular markers. Associations between their expression and clinicopathological parameters as well as survival analyses were performed. Results: TIM-3 was expressed in TILs from all 109 TNBCs, consisting of 17 cases (<5%), 31 cases (6%-25%), 48 cases (26%-50%), and 13 cases (>51%). High TIM-3 was significantly correlated with younger patients (p=0.0101), high TILs (p=0.0029), high tumor stage (p=0.0018), high PD-1 (p=0.0001) and high PD-L1 (p=0.0019), and tended to be associated with higher histologic grade, absence of extensive in situ components and microcalcification. High TIM-3 expression was significantly associated with a combinational immunophenotype group of high PD-L1 and high PD-1 (p<0.0001). High TIM-3 demonstrated a significantly better disease-free survival (DFS) (p<0.0001) and longer overall survival (OS) (p=0.0001), together with high TILs and high PD-1. In univariate survival analysis, high TIM-3 showed reduced relapse risk (p<0.0001) and longer OS (p=0.0003), together with high PD-1 expression. In multivariate analysis, high TIM-3 was statistically significant in predicting prognosis, showing better DFS (hazard ratio [HR], 0.0994; 95% confidence interval [CI], 0.0296-0.3337; p=0.0002) and longer OS (HR, 0.1109; 95% CI, 0.0314-0.3912; p=0.0006). Conclusion: In this study, we demonstrate that TIM-3 expression is an independent positive prognostic factor in TNBC, despite its association with poor clinical and pathologic features.

Pembrolizumab-related autoimmune hemolytic anemia in a patient with metastatic lung adenocarcinoma: a case report

  • Baek, Dong Won;Chae, Yee Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.366-370
    • /
    • 2021
  • Immune checkpoint inhibitors (ICIs) have become the main drugs for programmed cell death receptor-1 or ligand-1 expressing non-small cell lung cancer (NSCLC) combined with conventional chemotherapy. ICIs are generally more tolerable than cytotoxic chemotherapies in terms of toxicity, and ICI-related adverse events are mild and manageable. However, these drugs may lead to unexpected severe adverse events such as immune-related hematologic toxicities, which could be life-threatening. Here, a rare case of a pembrolizumab-related adverse event in a patient with NSCLC who showed early-onset hemolytic anemia and recovered by high-dose steroid and a series of plasma exchanges is reported.

Adrenal insufficiency development during chemotherapy plus anti-programmed death receptor-1 monoclonal antibody (tislelizumab) therapy in patients with advanced gastric cancer: two case reports

  • Baek, Jin Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.1
    • /
    • pp.62-66
    • /
    • 2022
  • Immune checkpoint inhibitor (ICI)-associated adrenal insufficiency is rare but may become a serious adverse event in patients treated with ICIs. The present case report documents two cases of adrenal insufficiency developed during chemotherapy plus tislelizumab (百泽安, Baize'an; BeiGene Ltd.) therapy in patients with advanced gastric cancer. Adrenal insufficiency developed after 6 and 13 cycles of treatment and was well controlled with hydrocortisone. The patients also developed hypothyroidism, which was managed with levothyroxine. Two patients showed a partial response, and one patient out of two achieved a near-complete response, sustaining over 11 months. Increased awareness of ICI-related adrenal insufficiency is crucial for early detection and prompt management of patients treated with ICIs.

Characteristics of Cancer Stem Cells and Immune Checkpoint Inhibition (암줄기세포의 특성 및 면역관문억제)

  • Choi, Sang-Hun;Kim, Hyunggee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.499-508
    • /
    • 2019
  • Cancer stem cells (CSCs), which are primarily responsible for metastasis and recurrence, have self-renewal, differentiation, therapeutic resistance, and tumor formation abilities. Numerous studies have demonstrated the signaling pathways essential for the acquisition and maintenance of CSC characteristics, such as WNT/${\beta}$-catenin, Hedgehog, Notch, B lymphoma Mo-MLV insertion region 1 homolog (BMI1), Bone morphogenetic protein (BMP), and TGF-${\beta}$ signals. However, few therapeutic strategies have been developed that can selectively eliminate CSCs. Recently, neutralizing antibodies against Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) and Programmed cell death protein 1 (PD-1)/Programmed death-ligand 1 (PD-L1), immune checkpoint inhibitors (ICIs), have shown promising outcomes in clinical trials of melanoma, lung cancer, and pancreatic cancer, as well as in hematologic malignancies. ICIs are considered to outperform conventional anticancer drugs by maintaining long-lasting anti-cancer effects, with less severe side effects. Several studies reported that ICIs successfully blocked CSC properties in head and neck squamous carcinomas, melanomas, and breast cancer. Together, these findings suggest that novel and effective anticancer therapeutic modalities using ICIs for selective elimination of CSCs may be developed in the near future. In this review, we highlight the origin and characteristics of CSCs, together with critical signaling pathways. We also describe progress in ICI-mediated anticancer treatment to date and present perspectives on the development of CSC-targeting ICIs.

Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation

  • Sandag, Zolzaya;Jung, Samil;Quynh, Nguyen Thi Ngoc;Myagmarjav, Davaajargal;Anh, Nguyen Hai;Le, Dan-Diem Thi;Lee, Beom Suk;Mongre, Raj Kumar;Jo, Taeyeon;Lee, MyeongSok
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.236-250
    • /
    • 2020
  • Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Up-regulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIP-Br1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikonin-mediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIP-Br1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.

Age- and Area-Dependent Distinct Effects of Ethanol on Bax and Bcl-2 Expression in Prenatal Rat Brain

  • Lee, Hae-Young;Naha, Nibedita;Kim, Jong-Hun;Jo, Mi-Ja;Min, Kwan-Sik;Seong, Hwan-Hoo;Shin, Dong-Hoon;Kim, Myeong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1590-1598
    • /
    • 2008
  • Cell proliferation and differentiation are critical processes in a developing fetal rat brain, during which programmed cell death (PCD) also plays an important role. One of the decisive factors for PCD is Bcl-2 family proteins, where Bax induces cell death, whereas Bcl-2 acts as an inhibitor of PCD. As maternal drinking is known to cause fetal alcohol syndrome (FAS) or malformation of the fetal brain during pregnancy, the objective of the present study was to investigate whether maternal ethanol exposure alters the PCD-related Bax and Bcl-2 protein expression during fetal brain development. Pregnant female rats were orally treated with 10% ethanol and the subsequent expressions of the Bax and Bcl-2 proteins examined in the fetal brain, including the forebrain, midbrain, and hindbrain, from gestational day (GD) 15.5 to GD 19.5, using Western blots, in situ hybridization, and immunohistochemistry. With regard to the ratio of Bcl-2 to Bax proteins (Bcl-2/Bax), the Bax protein was dominant in the forebrain and midbrain of the control GD 15.5 fetuses, except for the hindbrain, when compared with the respective ethanol-treated groups. Moreover, Bcl-2 became dominant in the midbrain of the control GD 17.5 fetuses when compared with the ethanol-treated group, representing an alternation of the natural PCD process by ethanol. Furthermore, a differential expression of the Bcl-2 and Bax proteins was found in the differentiating and migrating zones of the cortex, hippocampus, thalamus, and cerebellum. Thus, when taken together, the present results suggest that ethanol affects PCD in the cell differentiation and migration zones of the prenatal rat brain by modulating Bax and Bcl-2 expression in an age- and area-dependent manner. Therefore, this is the first evidence that ethanol may alter FAS-associated embryonic brain development through the alteration of Bax and Bc1-2 expression.

Proof-of-concept study of the caninized anti-canine programmed death 1 antibody in dogs with advanced non-oral malignant melanoma solid tumors

  • Masaya Igase;Sakuya Inanaga;Shoma Nishibori;Kazuhito Itamoto;Hiroshi Sunahara;Yuki Nemoto;Kenji Tani;Hiro Horikirizono;Munekazu Nakaichi;Kenji Baba;Satoshi Kambayashi;Masaru Okuda;Yusuke Sakai;Masashi Sakurai;Masahiro Kato;Toshihiro Tsukui;Takuya Mizuno
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.15.1-15.15
    • /
    • 2024
  • Background: The anti-programmed death 1 (PD-1) antibody has led to durable clinical responses in a wide variety of human tumors. We have previously developed the caninized anti-canine PD-1 antibody (ca-4F12-E6) and evaluated its therapeutic properties in dogs with advance-staged oral malignant melanoma (OMM), however, their therapeutic effects on other types of canine tumors remain unclear. Objective: The present clinical study was carried out to evaluate the safety profile and clinical efficacy of ca-4F12-E6 in dogs with advanced solid tumors except for OMM. Methods: Thirty-eight dogs with non-OMM solid tumors were enrolled prospectively and treated with ca-4F12-E6 at 3 mg/kg every 2 weeks of each 10-week treatment cycle. Adverse events (AEs) and treatment efficacy were graded based on the criteria established by the Veterinary Cooperative Oncology Group. Results: One dog was withdrawn, and thirty-seven dogs were evaluated for the safety and efficacy of ca-4F12-E6. Treatment-related AEs of any grade occurred in 13 out of 37 cases (35.1%). Two dogs with sterile nodular panniculitis and one with myasthenia gravis and hypothyroidism were suspected of immune-related AEs. In 30 out of 37 dogs that had target tumor lesions, the overall response and clinical benefit rates were 6.9% and 27.6%, respectively. The median progression-free survival and overall survival time were 70 days and 215 days, respectively. Conclusions: The present study demonstrated that ca-4F12-E6 was well-tolerated in non-OMM dogs, with a small number of cases showing objective responses. This provides evidence supporting large-scale clinical trials of anti-PD-1 antibody therapy in dogs.

The effect of caspase-3 inhibition on interdigital tissue regression in explant cultures of developing mouse limbs

  • Kudelova, Judita;Tucker, Abigail S.;Dubska, Lenka;Chlastakova, Ivana;Doubek, Jaroslav;Matalova, Eva
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.295-301
    • /
    • 2012
  • Interdigital tissue regression is one of the most well-known examples of embryonic programmed cell death, providing the mechanism behind separation of developing digits. Caspases have been shown to play a key part in this process, with activated caspase-3 localized between the developing digits. In caspase-3 knock-out adult mice, however, the digits are completely separated with no webbing. In other mutants with defects in the apoptotic machinery, such as Apaf1 deficient mice, interdigital tissue regression is initially inhibited but the webbing eventually disappears as alternative/additional cell death mechanisms step in. In order to investigate whether a similar temporal effect occurs after loss of caspase-3, we have used an in vitro approach to inhibit caspase-3 at specific times during digit separation. Previous limb explant culture approaches have encountered problems with proper limb development in culture, and thus a modified technique was used. The new approach enables detailed observation of the effects of caspase-3 inhibition on interdigital regression. Using these methods, we show that caspase-3 inhibition caused a delay in the loss of interdigital tissue compared with control explants, similar to that observed in Apaf1 mutant mice. Along with immunohistochemistry, active caspase-3 positive cells of the interdigital vs. digital regions were measured by flow cytometry. Notably, activated caspase-3 in vivo was found not only in the interdigital mesenchyme but also in the TUNEL negative digit region, supporting a role for caspase-3 in nonapoptotic events.

Characterization of Phytophthora capsici effector genes and their functional repertoire

  • Arif, Saima;Lim, Gi Taek;Kim, Sun Ha;Oh, Sang-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.643-654
    • /
    • 2021
  • Phytophthora capsici is one of the most destructive hemibiotrophic pathogens; it can cause blight in chili peppers, and secrete various effector proteins to infect the plants. These effectors contain an N-terminal conserved RXLR motif. Here, we generated full-length RXLR effector coding genes using primer pairs, and cloned them into the pGR106 vector for in planta expression. Two of these genes, PcREK6 and PcREK41 (P. capsici RXLR effector from the Korea isolate), were further characterized. PcREK6 and PcREK41 genes showed that they encode effector proteins with a general modular structure, including the N-terminal conserved RXLR-DEER motif and signal peptide sequences. PcREK6 and PcREK41 expressions were strongly induced when the chili pepper plants (Capsicum annuum) were challenged with P. capsici. These results provide molecular evidence to elucidate the virulence or avirulence factors in chili pepper. Our results also showed that two effectors induce hypersensitive response (HR) cell death when expressed in chili leaves. Cell death suppression assays in Nicotiana benthamiana revealed that most effectors could not suppress programmed cell death (PCD) triggered by Bcl-associated X (BAX) or Phytophthora infestans elicitin (INF1). However, PcREK6 fully suppressed PCD triggered by BAX, while PcREK41 partially suppressed PCD triggered by INF1 elicitin. These results suggest that PcREK effectors from P. capsici interact with putative resistance (R) proteins in planta, and different effectors may target different pathways in a plant cell to suppress pattern-triggered immunity (PTI) or effector-triggered immunity (ETI).

Identification of Ozone-induced Skin Damage and Screening of Antioxidant for Ozone (오존에 의한 피부손상 확인 및 이를 방어하는 피부 외용제 소재의 탐색)

  • 최신욱;김창수;정재형;김남경;한상화
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-51
    • /
    • 2004
  • Ozone(O$_3$), one of best-known toxic air pollutant, act as a strong oxidant. It is possible that skins exposed to the air can be easily damaged by such oxidative air pollutants. Therefore, in the present study, anti-oxidative effects of natural product. on $O_2$ㆍ and ㆍOH were investigated by EPR. Ozone caused protein damage and lipid oxidation, in HaCaT and B16F10 leading ultimately to programmed cell death. It also reduced the level of antioxidant molecules including ascorbic acid and tocopherol in stratum comeum. However, antioxidants originated from natural products could protect skin from these products could protect skin from these oxidative damages. We concluded that eight natural extracts including Rosa davurica, Ligularia sibrica, Green tea acted as strong antioxidants against ozone.