• Title/Summary/Keyword: progoitrin

Search Result 18, Processing Time 0.028 seconds

Variation of glucosinolate contents of 'Sinhongssam' grown under various light sources, periods, and light intensities (광원의 종류, 주기와 세기의 변화에 따른 '신홍쌈' 배추 내 글루코시놀레이트 함량)

  • Lee, Geon-Ryoung;Kim, Young Jin;Chun, Jin-Hyuk;Lee, Min-Ki;Ryu, Dong-Ki;Park, Suhyoung;Chung, Sun-Ok;Park, Sang Un;Lim, Yong-Pyo;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.125-133
    • /
    • 2014
  • The variation of glucosinolates (GSLs) in Chinese cabbage ('Sinhongssam') (Brassica rapa L. spp. pekinensis) cultivated under lights to control plant growth conditions was evaluated at different development stages. Under experimental conditions in plant factory system, plant growth conditions including light, temperature, and nutrients were designed to enhance GSLs. The variation of glucosinolates (GSLs) in Chinese cabbage ('Sinhongssam') (Brassica rapa L. spp. pekinensis) cultivated under lights to control plant growth conditions was evaluated at different development stages. Under experimental conditions in plant factory system, plant growth conditions including light, temperature, and nutrients were designed to enhance GSLs. The contents of GSLs were quantified in Chinese cabbage according to different light sources (Red+White, RW; Red+Blue+White, RBW, Fluorescence lamp, FL) at development stages (28, 42, and 56 days after sowing, DAS) using HPLC. Nine GSLs including five aliphatic (progoitrin, sinigrin, glucoalyssin, gluconapin, and glucobrassicanapin) three indolyl (glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin), and one aromatic (gluconasturtiin) GSLs were identified based on peak retention time in previous results of our laboratory. GSL contents were higher in RBW (36.55) and lower in FL ($15.24{\mu}mol/g/\;DW$). Results revealed that GSL contents were higher under controlled photoperiods (20/4 h) ($58.35{\mu}mol/g\;DW$) and controlled light intensity ($160{\mu}mol/m^2/s$) ($34.02{\mu}mol/g\;DW$), respectively. Lower amount of progoitrin and comparatively higher amount of glucobrassicin and gluconasturtiin was noted in Chinese cabbage cultivated under FL light (2.38, 9.82, and 2.10) at 42 DAS, photoperiod 20/4 h (3.16, 2.52, and 1.30) at 28 DAS, and light intensity at $130{\mu}mol/m^2/s$ (2.28, 2.24, and $1.51{\mu}mol/g\;DW$) at 42 DAS. Therefore FL light, photoperiod (20/4 h), and light intensity ($130{\mu}mol/m^2/s$) were considered as most suitable for the enhancement of GSLs in Chinese cabbage.

Determination of Bioactive Compounds and Anti-cancer Effect from Extracts of Korean Cabbage and Cabbage (배추와 양배추 추출물의 생리활성 물질 및 암세포 증식 억제효과 분석)

  • Hwang, Eun-Sun;Hong, Eun-Young;Kim, Gun-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • In this study, we determined total polyphenol content(TPC) and total flavonoid content(TFC) of extracts from Korean cabbage and cabbage using a spectrophotometric method as well as glucosinolates concentration by HPLC. TPCs of Korean cabbage and cabbage extracts were 308.48 ${\mu}g$ GAE/g dry weight and 344.75 ${\mu}g$ GAE/g dry weight, respectively. TFCs of Korean cabbage and cabbage extracts were 5.33 ${\mu}g$ QE/g dry weight and 5.95 ${\mu}g$ QE/g dry weight, respectively. We found six different glucosinolates, namely progoitrin, glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin and 4-methoxyglucobrassicin in the Korean cabbage extract. In the cabbage extract, there was four glucosinolates, namely glucoraphanin, sinigrin, glucobrassicin and 4-methoxyglucobrassicin. We determined the cytotoxic effect of Korean cabbage and cabbage extracts in AGS human stomach cancer cells, HepG2 human hepatic cancer cells and LNCaP human prostate cancer cells by MTT assay. Dose-dependent relationships were found between the extract concentrations and cancer cell growth inhibition. The overall results support that both Korean cabbage and cabbage, the major vegetables in Korea, contain bioactive compounds such as polypheol, flavonoids as well as glucosinolates and they may play a positive role in cancer prevention.

Evaluation of Individual Glucosinolates, Phytochemical Contents, and Antioxidant Activities under Various Red to Far-Red Light Ratios in Three Brassica Sprouts (적색/원적색광 조사 비율에 따른 3종 배추과 채소 새싹의 Glucosinolate 함량 및 항산화 기능성 평가)

  • Jo, Jung Su;Lee, Jun Gu
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.415-423
    • /
    • 2018
  • The aim of this study was to evaluate the individual glucosinolate (GSL), total phenol, total flavonoid, and vitamin C content, and antioxidant activity under various light quality condition, mainly focusing on red (R) to far-red (FR) light ratios in three Brassica sprouts (radish, Chinese cabbage, and broccoli). Three R/FR ratio of 0.6, 1.3, and 2.0 were exposed to 5-day old sprouts for 48 h in a controlled environment, and the targeted phytochemical contents and antioxidant activities were compared with three separate control plot of dark, fluorescent, and red:blue 8:2 conditions. Total GSL content was highest in broccoli among the cultivars throughout the respective treatments, and increased with the increasing of R/FR ratio in the broccoli sprouts, while the content showed non-significant results in the Chinese cabbage sprouts. The progoitrin, a major GSL in Chinese Cabbage and broccoli, content decreased by upto 38% and 69%, respectively, with decreasing the R/FR ratio compared to the control plots (fluorescent, red:blue 8:2, and dark condition). The contents of phenol, flavonoid, and vitamin C were lowest in dark condition in all the three Brassica sprouts. The total phenol content and antioxidant activities increased with decreasing the R/FR ratio in all the Brassica sprouts, while total flavonoid and vitamin C content showed different patterns depending upon the Brassica sprouts. These results suggest that additional use of FR is expected to improve the functional quality of Brassica sprouts in different ways.

Changes in Glucosinolate Content of Dolsan Leaf Mustard Kimchi during Fermentation and Correlation with Antioxidant, Antihypertensive, and Antidiabetic Activities (발효기간에 따른 돌산갓김치의 glucosinolates 함량변화와 항산화, 항고혈압 및 항당뇨활성과의 상관관계)

  • Oh, Sun-Kyung;Kim, Ki-Woong;Choi, Myeong-Rak
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1290-1300
    • /
    • 2018
  • The glucosinolate content, antioxidant activity, and antihypertensive and antidiabetic activities were measured in a crude extract of Dolsan leaf mustard kimchi (DLMK). The glucosinolate content was low at 6.41 and 7.92 mg/g in leaves and stems of DLMK after 21 days of fermentation. The total polyphenol and total flavonoid contents were more than 2 times higher in the leaves (211.7 mg GAE/g, 158.8 mg QE/g) than in the stem (53.7 mg GAE/g, 85.2 mg QE/g) during the fermentation period. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and electron donating ability (EDA) were similar to those of the control group after 14 days of fermentation, while the ferric reducing antioxidant power (FRAP) was higher in the leaves after 14 days of fermentation when compared to the control group. The angiotensin converting enzyme (ACE) inhibitory activity showed similar or higher inhibitory activity in the leaves when compared to the control group (0.01% captopril), and the ${\alpha}$-glucosidase inhibitory activity was higher in the leaves and stems when compared to the control group (0.05% acarbose). The glucosinolate content and the ABTS, ACE, and ${\alpha}$-glucosidase inhibitory activity were correlated, as determined by the observed straight line plot with a positive grade. During the fermentation period, the detected glucosinolates were sinigrin, glucobrasicin, glucotropeolin, and progoitrin. The DLMK extract is therefore expected to be valuable as a functional food because of its effective antioxidant, antihypertensive, and antidiabetic activities.

Analysis of glucosinolates and their metabolites from napa cabbage (Brassica rapa subsp. Pekinensis) and napa cabbage kimchi using UPLC-MS/MS (UPLC-MS/MS를 이용한 배추와 배추김치의 글루코시놀레이트 및 대사체 분석)

  • Kim, Jaecheol;Park, Hyo Sun;Hwang, Keum Taek;Moon, BoKyung;Kim, Suna
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.587-594
    • /
    • 2020
  • In this study, we analyzed glucosinolates and their metabolites in the inner and outer parts of napa cabbage (NC; Brassica rapa subsp. pekinensis) and napa cabbage kimchi (NKC) using UPLC-ESI-MS/MS. In the extracts from NC and NKC, glucobrassicanapin (m/z 386), glucoalyssin (m/z 450), glucobrassicin (m/z 447), 4-methoxyglucobrassicin (m/z 477), and neoglucobrassicin (m/z 477) were detected using the MS scan mode ([M-H]-), and gluconapin (m/z 372→97), progoitrin (m/z 388→97), glucoiberin (m/z 422→97), 4-methoxyglucobrassicin (m/z 477→97), and neoglucobrassicin (m/z 477→447) were detected using the MS/MS MRM mode ([M-H]-). Ascorbigen (m/z 306→130) and indole-3-carboxaldehyde (I3A; m/z 146→118), which were metabolites of glucobrassicins, were detected using the MS/MS MRM ([M+H]+) mode. The peak intensities of ascorbigen in the extract from the inner and outer parts of NC were significantly higher than those of the NKC extract (p<0.05); however, there was no significant difference in I3A peak intensity between the NC and NKC extracts.

Influence of the lime on inorganic ion and glucosinolate contents in Chinese cabbage (생석회 시비가 배추 내 무기이온 및 글루코시놀레이트 함량에 미치는 영향)

  • Kim, Young-Jin;Chun, Jin-Hyuk;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.415-421
    • /
    • 2015
  • Ca is material to used in Chinese cabbage (Brasica rapa L. spp. pekinensis). The variation of inorganic ions and GSLs in Chinese cabbage cultivated to control additional Ca contents in slaked lime. The additional fertilizer of slaked lime differ four grade that 0 g (Ca-0), 0.28 g (Ca-1), 0.56 g (Ca-2), 0.84 g (Ca-3) are week intervals with a total of 8 times after transplanting. Inorganic ions in Chinese cabbage ('Bulam plus') were analyzed to use inductively coupled plasma atomic emission spectometry(ICP). The more additional slaked lime input, the more almost macronutrients contents were high except Ca. Ca contents were higher in Ca-0 (153.10) and lower in Ca-3 (130.55 mg/kg dry weight, DW). GSLs were identified based on peak retention time in previous results of our laboratory. Seven GSLs including two aliphatic (gluconapin, glucobrassicanapin), one aromatic (gluconasturtiin), four indolyl (glucobrassicin, neoglucobrassicin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin) were detected using HPLC. Progoitrin, 4-methoxyglucobrassicin, and gluconasturtiin contents increased in proportion to the input in additional slaked lime. Total GSLs contents were Ca-0 (11.95), Ca-1 (17.02), Ca-2 (19.63), Ca-3 ($17.11{\mu}mol/g$ dry weight, DW). Total Ca and GSLs contents (Ca-1,2,3; mean 17.92) are higher than non treatment (Ca-0; $11.95{\mu}mol/g$ DW).

Effect of methyl jasmonate on the glucosinolate contents and whole genome expression in Brassica oleracea (유묘기 양배추류에서 메틸자스모네이트에 의한 글루코시놀레이트 함량 변화 및 전사체 발현 분석)

  • Lee, Jeongyeo;Min, Sung Ran;Jung, Jaeeun;Kim, HyeRan
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.189-204
    • /
    • 2019
  • In this study, we analyzed the changes in glucosinolate content and gene expression in TO1000DH3 and Early big seedling upon methyl jasmonate (MeJA) treatment. Analysis of glucosinolate contents after MeJA treatment at $200{\mu}M$ concentration showed that the total glucosinolate content increased by 1.3-1.5 fold in TO1000DH3 and 1.3-3.8 fold in Early big compared to those before treatment. Aliphatic glucosinolates, progoitrin and gluconapin, were detected only in TO1000DH3, and the changes in the content of neoglucobrassicin were the greatest at 48 hours after MeJA treatment in TO1000DH3 and Early big. The transcriptomic analysis showed that transcripts involved in stress or defense reactions, or those related to growth were specifically expressed in TO1000DH3, while transcripts related to nucleosides or ATP biosynthesis were specifically expressed in Early big. GO analysis on transcripts with more than two-fold change in expression upon MeJA treatment, corresponding to 12,020 transcripts in TO1000DH3 and 13,510 transcripts in Early big, showed that the expression of transcripts that react to stimulus and chemical increased in TO1000DH3 and Early big, while those related to single-organism and ribosome synthesis decreased. In particular, the expression increased for all transcripts related to indole glucosinolate biosynthesis, which is associated with increase in glucobrassicin and neoglucobrassicin contents. Upon MeJA treatment, the expression of AOP3 (Bo9g006220, Bo9g006240), TGG1 (Bo14804s010) increased only in TO1000DH3, while the expression of Dof1.1 (Bo5g008360), UGT74C1 (Bo4g177540), and GSL-OH (Bo4g173560, Bo4g173550, Bo4g173530) increased specifically in Early big.

Heat Shock Treatments Induce the Accumulation of Phytochemicals in Kale Sprouts (열처리에 의한 케일 새싹의 기능성물질 축적)

  • Lee, Min-Jeong;Lim, Sooyeon;Kim, Jongkee;Oh, Myung-Min
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.509-518
    • /
    • 2012
  • The objective of this study was to determine the effect of heat shock treatments on the phytochemicals including antioxidants and anticancer materials in kale (Brassica oleracea L. var. acephala) sprouts. In study I, kale sprouts grown under the growing system for four days were soaked at 40, 50, or $60^{\circ}C$ distilled water for 10, 30, or 60 seconds, and in study II, kale sprouts were soaked at $50^{\circ}C$ distilled water for 10, 20, 30, 45, or 60 seconds. After the heat shock treatments, the sprouts were transferred into normal growing conditions and recovered there for two days. Fresh and dry weights, electrolyte leakage, total phenolic concentration, antioxidant capacity, total flavonoid concentration, phenylalanine ammonia-lyase (PAL) activity, and glucosinolates content of the sprouts were measured before and after the heat shock treatments. As a result, there was a significant decrease in the fresh and dry weight of kale sprouts treated with heat shock compared with control at harvest in study I. Especially, heat shock at $60^{\circ}C$ lead to more pronounced growth inhibition compared with heat treatments at 40 and $50^{\circ}C$. Electrolyte leakage by cell collapse was the highest in the sprouts exposed to $60^{\circ}C$ distilled water, which agreed with the growth results. Heat shock at $50^{\circ}C$ significantly induced the accumulation of phenolic compounds. In study II, fresh weight of kale sprouts at $50^{\circ}C$ heat shock showed a significant decrease compared with the control at one and two days after the treatment. However, the decrease was minimal and dry weight of kale sprouts was not significantly different from that in control. In contrast, the heat shock-treated kale sprouts had higher level of total phenolic concentration than control at harvest. Heat shock treatments at $50^{\circ}C$ for 20 seconds or more showed at least 1.5 and 1.2 times higher total phenolic concentration and antioxidants capacity than control, respectively. The change of the total flavonoid concentration was similar with that of antioxidants. PAL activity after 24 hours of heat shock was higher in all the heat shock-treated sprouts than that in control suggesting heat shock may stimulate secondary metabolic pathway in kale sprouts. Seven glucosinolates were identified in kale sprouts and soaking the sprouts with $50^{\circ}C$ water for 20 seconds had a pronounced impact on the accumulation of total glucosinolates as well as two major glucosinolates, progoitrin and sinigrin, at harvest. In conclusion, this study suggests that heat shock using hot water would be a potential strategy to improve nutritional quality of kale sprouts by inducing the accumulation of phytochemicals with antioxidant and anticancer properties.