DOI QR코드

DOI QR Code

Heat Shock Treatments Induce the Accumulation of Phytochemicals in Kale Sprouts

열처리에 의한 케일 새싹의 기능성물질 축적

  • Lee, Min-Jeong (Department of Horticultural Science, Chungbuk National University) ;
  • Lim, Sooyeon (Department of Integrative Plant Science, Chung-Ang University) ;
  • Kim, Jongkee (Department of Integrative Plant Science, Chung-Ang University) ;
  • Oh, Myung-Min (Department of Horticultural Science, Chungbuk National University)
  • 이민정 (충북대학교 원예과학과) ;
  • 임수연 (중앙대학교 식물시스템과학과) ;
  • 김종기 (중앙대학교 식물시스템과학과) ;
  • 오명민 (충북대학교 원예과학과)
  • Received : 2012.05.09
  • Accepted : 2012.07.02
  • Published : 2012.10.31

Abstract

The objective of this study was to determine the effect of heat shock treatments on the phytochemicals including antioxidants and anticancer materials in kale (Brassica oleracea L. var. acephala) sprouts. In study I, kale sprouts grown under the growing system for four days were soaked at 40, 50, or $60^{\circ}C$ distilled water for 10, 30, or 60 seconds, and in study II, kale sprouts were soaked at $50^{\circ}C$ distilled water for 10, 20, 30, 45, or 60 seconds. After the heat shock treatments, the sprouts were transferred into normal growing conditions and recovered there for two days. Fresh and dry weights, electrolyte leakage, total phenolic concentration, antioxidant capacity, total flavonoid concentration, phenylalanine ammonia-lyase (PAL) activity, and glucosinolates content of the sprouts were measured before and after the heat shock treatments. As a result, there was a significant decrease in the fresh and dry weight of kale sprouts treated with heat shock compared with control at harvest in study I. Especially, heat shock at $60^{\circ}C$ lead to more pronounced growth inhibition compared with heat treatments at 40 and $50^{\circ}C$. Electrolyte leakage by cell collapse was the highest in the sprouts exposed to $60^{\circ}C$ distilled water, which agreed with the growth results. Heat shock at $50^{\circ}C$ significantly induced the accumulation of phenolic compounds. In study II, fresh weight of kale sprouts at $50^{\circ}C$ heat shock showed a significant decrease compared with the control at one and two days after the treatment. However, the decrease was minimal and dry weight of kale sprouts was not significantly different from that in control. In contrast, the heat shock-treated kale sprouts had higher level of total phenolic concentration than control at harvest. Heat shock treatments at $50^{\circ}C$ for 20 seconds or more showed at least 1.5 and 1.2 times higher total phenolic concentration and antioxidants capacity than control, respectively. The change of the total flavonoid concentration was similar with that of antioxidants. PAL activity after 24 hours of heat shock was higher in all the heat shock-treated sprouts than that in control suggesting heat shock may stimulate secondary metabolic pathway in kale sprouts. Seven glucosinolates were identified in kale sprouts and soaking the sprouts with $50^{\circ}C$ water for 20 seconds had a pronounced impact on the accumulation of total glucosinolates as well as two major glucosinolates, progoitrin and sinigrin, at harvest. In conclusion, this study suggests that heat shock using hot water would be a potential strategy to improve nutritional quality of kale sprouts by inducing the accumulation of phytochemicals with antioxidant and anticancer properties.

이번 연구는 새싹채소 재배 시 고온의 물을 이용한 열처리가 케일 새싹의 항산화물질과 항암성물질 등과 같은 기능성물질 축적에 영향을 주는지 확인하고자 수행되었다. 실험I 에서는 파종 후 4일째 40, 50, $60^{\circ}C$의 증류수가 담긴 항온조에 각각 10, 30, 60초 동안 침지하여 열처리 하였고, 실험II 에서는 $50^{\circ}C$의 증류수에 각각 10, 20, 30, 45, 60초 침지처리 하였다. 열처리 한 케일 새싹은 다시 정상적인 생육 환경에서 2일 동안 추가적으로 재배되었다. 열처리 전, 후에 생체 중, 건물중, 전해질 유출 정도, 총 페놀 농도, 항산화도, 총 플라보노이드 농도, 페닐알라닌 암모니아-리아제 활성, 글루코시놀레이트 함량을 측정하였다. 실험I의 결과, 열처리 후 2일째 대조구에 비해 모든 처리구의 생체중, 건물중이 감소되었으며, 특히 $60^{\circ}C$ 열처리가 40, $50^{\circ}C$의 열처리보다 그 정도가 심했다. 세포 파괴에 의한 전해질 유출 정도 또한 $60^{\circ}C$에서 가장 높게 나타났다. 총 페놀 농도는 $50^{\circ}C$의 열처리에서 대조구에 비해 유의적으로 증가했으며 항산화도 또한 비슷한 경향을 보였다. 실험 II의 결과 $50^{\circ}C$ 열처리는 실험I의 결과와 같이 생체중의 감소를 보였지만 그 정도는 크지 않았으며 건물중에서는 대조구와 유의적 차이가 없었다. 열처리 후 2일째 모든 처리구는 대조구에 비해 유의적으로 높은 총 페놀 축적을 유도하였다. $50^{\circ}C$에서 20초 이상의 열처리는 대조구에 비해 약 1.5배 이상 총 페놀 농도를 증가시켰으며, 항산화도는 대조구에 비해 약 1.2배 유의적으로 높았고, 총 플라보노이드 농도 또한 대조구에 비해 높은 수준을 나타냈다. 페닐알라닌 암모니아-리아제의 활성은 열처리 24시간째에 대조구보다 모든 처리구에서 높게 나타나, 열처리가 이차대사산물의 생합성을 유도하는 것을 알 수 있었다. 열처리 후 2일째 글루코시놀레이트의 함량은 20초 열처리에서 유의적으로 가장 높은 값을 나타냈다. 따라서, 케일 새싹 재배 시 열처리는 항산화 및 항암물질과 같은 기능성물질의 축적을 유도하여 케일 새싹의 영양학적 품질향상을 도모할 수 있는 잠재적인 수단임을 확인할 수 있었다.

Keywords

References

  1. Ainsworth, E.A. and K.M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2:875-877. https://doi.org/10.1038/nprot.2007.102
  2. Allakhverdiev, S.I., V.D. Kreslavski, V.V. Klimov, D.A. Los, R. Carpentier, and P. Mohanty. 2008. Heat stress: an overview of molecular responses in photosynthesis. Photosyn. Res. 98:541-550. https://doi.org/10.1007/s11120-008-9331-0
  3. Bhattacharya, A., Y. Li, K.L. Wade, J.D. Paonessa, J.W. Fahey, and Y. Zhang. 2010. Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion. Carcinogenesis 31:2105-2110. https://doi.org/10.1093/carcin/bgq202
  4. Blum, A., N. Klueva, and H.T. Nguyen. 2001. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 117:117-123. https://doi.org/10.1023/A:1004083305905
  5. Boo, H.O., B.G. Heo, S. Gorinstein, and S.U. Chon. 2011. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 181:479-484. https://doi.org/10.1016/j.plantsci.2011.07.013
  6. Camejo, D., P. Rodríguez, M.A. Morales, J.M. Dell'amico, A. Torrecillas, and J.J. Alarcón. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281-289. https://doi.org/10.1016/j.jplph.2004.07.014
  7. Cevallos-Casals, B.A. and L. Cisneros-Zevallos. 2010. Impact of germination on phenolic content and antioxidant activity of 13 edible species. Food Chem. 119:1485-1490. https://doi.org/10.1016/j.foodchem.2009.09.030
  8. Chappell, J. and K. Hahlbrock. 1984. Transcription of plant defence genes in response to UV light or fungal elicitor. Nature 311:76-78. https://doi.org/10.1038/311076a0
  9. Chen, H.H., Z.Y. Shen, and P.H. Li. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719-725. https://doi.org/10.2135/cropsci1982.0011183X002200040006x
  10. Dat, J.F., C.H. Foyer, and I.M. Scott. 1998. Changes in salicylic acid and antioxidants during induction of thermo tolerance in mustard seedlings. Plant Physiol. 118:1455-1461. https://doi.org/10.1104/pp.118.4.1455
  11. Dewanto, V., X. Wu, K.K. Adom, and R.H. Liu. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agr. Food Chem. 50:3010-3014. https://doi.org/10.1021/jf0115589
  12. Dixon, R.A. and N.L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085-1097. https://doi.org/10.1105/tpc.7.7.1085
  13. Fahey, J.W., Y. Zhang, and P. Talalay. 1997. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA 94:10367-10372. https://doi.org/10.1073/pnas.94.19.10367
  14. Giaveno, C. and J. Ferrero. 2003. Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, Argentina. Crop Breeding Appl. Biotechnol. 3:89-94. https://doi.org/10.12702/1984-7033.v03n02a01
  15. Gong, M., S.N. Chen, Y.Q. Song, and Z.G. Li. 1997. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Austral. J. Plant Physiol. 24:371-379. https://doi.org/10.1071/PP96118
  16. Hertog, M.G.L., P.C.H. Hollman, and M.B. Katan. 1992. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agr. Food Chem. 40:2379-2383. https://doi.org/10.1021/jf00024a011
  17. Hwang, I.G., K.S. Woo, T.M. Kim, D.J. Kim, M.H. Yang, and H.S. Jeong. 2006. Change of physicochemical characteristics of Korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Kor. J. Food Sci. Technol. 38:342-347.
  18. International Organization for Standarization (ISO). 1992. Rapeseed - Determination of glucosinolates content Part 1 (ISO 9167-1). ISO, Geneva.
  19. Jahangir, M., H.K. Kim, Y.H. Choi, and R. Verpoorte. 2009. Health-affecting compounds in Brassicaceae. Comprehensive Rev. Food Sci. Food Safety. 8:31-43. https://doi.org/10.1111/j.1541-4337.2008.00065.x
  20. Koukol, J. and E.E. Conn. 1961. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J. Biol. Chem. 236:2692-2698.
  21. Lee, M.Y., S.L. Shin, S.H. Park, N.R. Kim, Y.D. Chang, and C.H. Lee. 2009. Development of optimal cultivation conditions and analysis of antioxidant activities of Arctium lappa sprout vegetables. Kor. J. Plant Res. 22:304-311.
  22. Miller, N.J. and C.A. Rice-Evans. 1996. Spectrophotometric determination of antioxidant activity. Redox Rpt. 2:161-171.
  23. Oh, M.M. and C.B. Rajashekar. 2009. Antioxidant content of edible sprouts: Effects of environmental shocks. J. Sci. Food Agr. 89:2221-2227. https://doi.org/10.1002/jsfa.3711
  24. Oh, M.M., E.E. Carey, and C.B. Rajashekar. 2009. Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiol. Biochem. 47:578-583. https://doi.org/10.1016/j.plaphy.2009.02.008
  25. Perez-Balibrea, S., D.A. Moreno, C. Garcia-Viguera. 2011a. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem. 125:348-354 https://doi.org/10.1016/j.foodchem.2010.09.004
  26. Perez-Balibrea, S., D.A. Moreno, C. Garcia-Viguera. 2011b. Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chem. 129:35-44. https://doi.org/10.1016/j.foodchem.2011.03.049
  27. Poiroux-Gonord, F., L.P. Bidel, A.L. Fanciullino, H. Gautier, F. Lauri-Lopez, and L. Urban. 2010. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agr. Food Chem. 58:12065-12082. https://doi.org/10.1021/jf1037745
  28. Rajashekar, C.B., E.E. Carey, X. Zhao, and M.-M. Oh. 2009. Health-promoting phytochemicals in fruits and vegetables: Impact of abiotic stresses and crop production practices. Functional Plant Sci. Biotechnol. 3:30-38.
  29. Rivero, R.M., J.M. Ruiz, P.C. Garcia, L.R. Lopez-Lefebre, E. Sanchez, and L. Romero. 2001. Resistance to cold and heat stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160:315-321. https://doi.org/10.1016/S0168-9452(00)00395-2
  30. Rosa, E. and R.K. Heaney. 1996. Seasonal variation in protein, mineral and glucosinolate composition of Portuguese cabbages and kale. Animal Feed Sci. Technol. 57:111-127. https://doi.org/10.1016/0377-8401(95)00841-1
  31. Sairam, R.K. and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Current Sci. 86:407-421.
  32. Samuoliene, G., A. Urbonavicoite, A. Brazaityte, G. Sabajeviene, J. Sakalauskaite, and P. Duchovskis. 2011. The impact of LED illumination on antioxidant properties of sprouted seeds. Centrual European J. Biol. 6:68-74. https://doi.org/10.2478/s11535-010-0094-1
  33. Sarikamis, G., A. Balkaya, and R. Yanmaz. 2008. Glucosinolates in kale genotypes from the blacksea region of Turky. Biotechnol. Biotechnol. Equipment 22:942-946. https://doi.org/10.1080/13102818.2008.10817584
  34. Schmidt, S., M. Zietz, M. Schreiner, S. Rohn, L.W. Kroh, and A. Krumbein. 2010. Genotypic and climatic influences on the concentration and composition of flavonoids in kale (Brassica oleracea var. sabellica). Food Chem. 119:1293-1299. https://doi.org/10.1016/j.foodchem.2009.09.004
  35. Schreiner, M. 2005. Vegetable crop management strategies to increase the quantity of phytochemicals. European J. Nutr. 44:85-94. https://doi.org/10.1007/s00394-004-0498-7
  36. Takaya, Y., Y. Kondo, T. Furukawa, and M. Niwa. 2003. Antioxidant constituents of radish sprout (Kaiware-daikon), Raphanus sativus L. J. Agr. Food Chem. 51:8061-8066. https://doi.org/10.1021/jf0346206
  37. Velasco, P., M.E. Cartea, C. Gonzalez, M. Vilar, and A. Ordas. 2007. Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J. Agr. Food Chem. 55:955-962. https://doi.org/10.1021/jf0624897
  38. Velikova, V. and F. Loreto. 2005. On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ. 28:318-327. https://doi.org/10.1111/j.1365-3040.2004.01314.x
  39. Wahid, A. and A. Ghazanfar. 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol. 163:723-730. https://doi.org/10.1016/j.jplph.2005.07.007
  40. Wahid, A., S. Gelani, M. Ashraf, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environmental Experimental Bot. 61:199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  41. Washida, K., M. Miyata, T. Koyama, K. Yazawa, and K. Nomoto. 2010. Suppressive effect of Yamato-mana (Brassica rapa L. oleifera group) constituent 3-butenyl glucosinolate (gluconapin) on postprandial hypertriglyceridemia in mice. Biosci. Biotechnol. Biochem. 74:1286-1289. https://doi.org/10.1271/bbb.100018
  42. Zhang, Y. 2004. Cancer-preventive isothiocyanates: Measurement of human exposure and mechanism of action. Mutation Res. 555:173-190. https://doi.org/10.1016/j.mrfmmm.2004.04.017

Cited by

  1. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content vol.1, pp.1, 2014, https://doi.org/10.1038/hortres.2014.8
  2. Optimizing growth conditions for glucosinolate production in Chinese cabbage vol.59, pp.5, 2018, https://doi.org/10.1007/s13580-018-0084-1
  3. Short-term low temperature increases phenolic antioxidant levels in kale vol.56, pp.5, 2012, https://doi.org/10.1007/s13580-015-0056-7
  4. Effects of different sulfur ion concentration in nutrient solution and light source on glucosinolate contents in kale sprouts (Brassica oleracea var. acephala) vol.44, pp.2, 2012, https://doi.org/10.7744/kjoas.20170026
  5. Optimal Duration of Drought Stress Near Harvest for Promoting Bioactive Compounds and Antioxidant Capacity in Kale with or without UV-B Radiation in Plant Factories vol.9, pp.3, 2012, https://doi.org/10.3390/plants9030295
  6. Spatial and Temporal Bioactive Compound Contents and Chlorophyll Fluorescence of Kale ( Brassica oleracea L.) Under UV‐B Exposure Near Harvest Time in Controlled Environments vol.96, pp.4, 2012, https://doi.org/10.1111/php.13237
  7. The Influence of Physical Treatments on Phytochemical Changes in Fresh Produce after Storage and Marketing vol.11, pp.4, 2012, https://doi.org/10.3390/agronomy11040788
  8. Improving the Health-Benefits of Kales (Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review vol.10, pp.12, 2012, https://doi.org/10.3390/plants10122629