• Title/Summary/Keyword: progenitor cell

Search Result 181, Processing Time 0.022 seconds

Intravenous Single and Two Week Repeated Dose Toxicity Studies of Rice Cells-derived Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor on Rats

  • Ji, Jung-Eun;Lee, Jung-Min;Choi, Jong-Min;Choi, Young-Hwa;Kim, Seok-Kyun;Ahn, Kyong-Hoon;Lee, Dong-Hoon;Kim, Ha-Hyung;Han, Kyu-Boem;Kim, Dae-Kyong
    • Toxicological Research
    • /
    • v.23 no.4
    • /
    • pp.383-389
    • /
    • 2007
  • Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) regulates proliferation and differentiation of hematopoietic progenitor cells and modulates function of the mature hematopoietic cells. In the previous study, we reported that hGM-CSF could be produced in transgenic rice cell suspension culture, termed rhGM-CSF. In the present study we examined the single and repeated dose toxicity of rice cells-derived hGM-CSF in SD rats. During single dose toxicity study for 7 days, there were no any toxic effects at any dose of from 10 to $1000{\mu}g/kg$. The lethal dose ($LD_{50}$) was not found in this range. Moreover, repeated dose toxicity study of 14-days period and at the doses of 50 and $200{\mu}g/kg$ (i. v.) of rhGM-CSF did not show any changes in food and water intake. There were also no significant changes in both body and organ weights between the control and the test groups. The hematological and blood biochemical parameters were statistically not different in all the groups. These results suggest that rhGM-CSF has no toxicity in SD rats.

Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells

  • Choi, Yoon-Hee;Lee, Hyun Sook;Chung, Cha-Kwon;Kim, Eun Ji;Kang, Il-Jun
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS: AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS: AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS: These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes.

Comparison of surface roughness effects upon the attachment of osteoblastic progenitor MC3T3-E1 cells and inflammatory RAW 264.7 cells to a titanium disc

  • Noh, Se-Ra;Im, Tae-Yoon;Lee, Eun-Young;Jang, Ha-Na;Dung, Tran D.;Kim, Myung-Soo;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The attachment and adhesion of RAW 264.7 and MC3T3-E1 cells to titanium (Ti) discs with various degrees of roughness was investigated. The attachment, adhesion, and proliferation of these cells were evaluated after 4 hr, 24 hr and 7 day incubations. Both RAW 264.7 and MC3T3-E1 cells showed a time-dependant correlation between attachment and adhesion on the surface of the titanium discs. Both types of cells tended to have higher survival rate on these discs as the surface roughness increased. The percentage of adherent inflammatory RAW 264.7 cells was greater than MC3T3-E1 cells at 24 hr, but this was reversed at 7 days in culture. The morphology of osteoblastic MC3T3-E1 cells at 24 hr, determined using a surface emission microscope (SEM), appeared flattened and spread out while inflammatory RAW 264.7 cells were predominantly spherical in shape. The adhesion of both cell types on the titanium discs was dependant on the levels of fibronectin adsorbed on the disc surface, indicating that serum constituents modulate the efficient adhesion of these cells. Our data indicate that the cellular response to the titanium surface is dependent on the types of cells, surface roughness and serum constituents.

Enhancing generation efficiency of liver organoids in a collagen scaffold using human chemically derived hepatic progenitors

  • Myounghoi Kim;Yohan Kim;Elsy Soraya Salas Silva;Michael Adisasmita;Kyeong Sik Kim;Yun Kyung Jung;Kyeong Geun Lee;Ji Hyun Shin;Dongho Choi
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.27 no.4
    • /
    • pp.342-349
    • /
    • 2023
  • Backgrounds/Aims: Liver organoids have emerged as a powerful tool for studying liver biology and disease and for developing new therapies and regenerative medicine approaches. For organoid culture, Matrigel, a type of extracellular matrix, is the most commonly used material. However, Matrigel cannot be used for clinical applications due to the presence of unknown proteins that can cause immune rejection, batch-to-batch variability, and angiogenesis. Methods: To obtain human primary hepatocytes (hPHs), we performed 2 steps collagenase liver perfusion protocol. We treated three small molecules cocktails (A83-01, CHIR99021, and HGF) for reprogramming the hPHs into human chemically derived hepatic progenitors (hCdHs) and used hCdHs to generate liver organoids. Results: In this study, we report the generation of liver organoids in a collagen scaffold using hCdHs. In comparison with adult liver (or primary hepatocyte)-derived organoids with collagen scaffold (hALO_C), hCdH-derived organoids in a collagen scaffold (hCdHO_C) showed a 10-fold increase in organoid generation efficiency with higher expression of liver- or liver progenitor-specific markers. Moreover, we demonstrated that hCdHO_C could differentiate into hepatic organoids (hCdHO_C_DM), indicating the potential of these organoids as a platform for drug screening. Conclusions: Overall, our study highlights the potential of hCdHO_C as a tool for liver research and presents a new approach for generating liver organoids using hCdHs with a collagen scaffold.

Use of Human Adipose Tissue as a Source of Endothelial Cells (혈관내피세포 채취의 원천으로 인간 지방조직의 활용)

  • Park, Bong-Wook;Hah, Young-Sool;Kim, Jin-Hyun;Cho, Hee-Young;Jung, Myeong-Hee;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Jang, Jung-Hui;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.

PROBLEMS IN OSTEOGENIC DIFFERENTIATION OF RAT BONE MARROW STROMAL CELLS (쥐의 골수로부터 추출한 줄기세포를 이용한 조골세포로의 분화 유도과정에서 나타난 문제점에 관한 분석 연구)

  • Kim, In-Sook;Cho, Tae-Hyung;Zhang, Yu-Lian;Lee, Kyu-Back;Park, Yong-Doo;Rho, In-Sub;Weber, F.;Lee, Jong-Ho;Kim, Myung-Jin;Hwang, Soon-Jung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This study was aimed to characterize osteogenic potential of rat bone marrow stromal cells (BMSC) isolated with standard flushing method and investigate the plasticity of transdifferentiation between osteoblastic and adipocytic lineage of cultured BMSC. Unlike aspiration method in human, rat bone marrow was extracted by means of irrigation with culture media that elevates the possibility of co-extraction of committed osteoprogenitor, or preosteoblast or other progenitor cells of several types present inside bone marrow. The cultured stromal cells showed high ALP activity which is representative marker of osteoblast without any treatment. Osteogenic inducers such as Dex and BMP-2 were examined for the evaluation of their effect on osteogenic and adipocytic differentiation of stromal cells, because they function as osteoinductive agent in stromal cells, but simultaneously induce adipogenic differentiation. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity or mRNA expression of osteoblast markers such as osteopontin, bone sialoprotein, collagen type I and CbfaI, and in vitro matrix mineralization by von Kossa staining. Oil red staining method was used to detect adipocyte and adipocytic marker, aP2 and $PPAR{\gamma}2$ expression was examined using RT-PCR. It can be supposed that irrigation procedure resulted in high portion of already differentiation-committed osteoprogenitor cell showing elevated ALP activity and strong mineralization only under the supplement of $100{\mu}M$ ascorbic 2-phosphate and 10mM ${\beta}$-glycerophosphate without any treatment of osteogenic inducers such as Dex and BMP-2. Dex and BMP-2 seemed to transdifferentiate osteoprogenitor cells having high ALP activity into adipocytes temporarily, but continuous treatment redifferentiated into osteoblast and developed in vitro matrix mineralization. This property must be considered either in tissue engineering for bone regeneration, or in research of characterization of osteogenic differentiation, with rat BMSC isolated by the standard irrigation method.

In vitro Activities of Polycalcium, a Mixture of Polycan and Calcium Lactate-Gluconate, on Osteoclasts and Osteoblasts (In vitro에서 polycalcium 복합조성물이 파골세포와 조골세포에 미치는 영향)

  • Choi, Jae-Suk;Kim, Joo-Wan;Kim, Ki-Young;Cho, Hyung-Rae;Ha, Yu-Mi;Ku, Sae-Kwang;Cho, Kwang-Keun;Choi, In-Soon
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1199-1203
    • /
    • 2011
  • The present study evaluated the beneficial effects of polycalcium (a mixture of Polycan and calcium lactate-gluconate 1:9 [g/g]) on osteoporosis using in vitro assays. Cell proliferation and alkaline phosphatase activities of osteoblasts (human primary osteoblasts) and osteoclast differentiation of RAW264.7 cells (murine osteoclast progenitor cells) treated with different concentrations of polycalcium for various periods were assessed. Osteoblast proliferation was stimulated and prevented RANKL-induced osteoclast differentiation of RAW264.7 cells. These results support the development of ideal anti-osteoporotic agents, such as polycalcium, that exhibit properties that accelerate bone formation and inhibit bone resorption.

Effects of Exogenous Insulin-like Growth Factor 2 on Neural Differentiation of Parthenogenetic Murine Embryonic Stem Cells

  • Choi, Young-Ju;Park, Sang-Kyu;Kang, Ho-In;Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.33-37
    • /
    • 2012
  • Differential capacity of the parthenogenetic embryonic stem cells (PESCs) is still under controversy and the mechanisms of its neural induction are yet poorly understood. Here we demonstrated neural lineage induction of PESCs by addition of insulin-like growth factor-2 (Igf2), which is an important factor for embryo organ development and a paternally expressed imprinting gene. Murine PESCs were aggregated to embryoid bodies (EBs) by suspension culture under the leukemia inhibitory factor-free condition for 4 days. To test the effect of exogenous Igf2, 30 ng/ml of Igf2 was supplemented to EBs induction medium. Then neural induction was carried out with serum-free medium containing insulin, transferrin, selenium, and fibronectin complex (ITSFn) for 12 days. Normal murine embryonic stem cells derived from fertilized embryos (ESCs) were used as the control group. Neural potential of differentiated PESCs and ESCs were analyzed by immunofluorescent labeling and real-time PCR assay (Nestin, neural progenitor marker; Tuj1, neuronal cell marker; GFAP, glial cell marker). The differentiated cells from both ESC and PESC showed heterogeneous population of Nestin, Tuj1, and GFAP positive cells. In terms of the level of gene expression, PESC showed 4 times higher level of GFAP expression than ESCs. After exposure to Igf2, the expression level of GFAP decreased both in derivatives of PESCs and ESCs. Interestingly, the expression level of $Tuj1$ increased only in ESCs, not in PESCs. The results show that IGF2 is a positive effector for suppressing over-expressed glial differentiation during neural induction of PESCs and for promoting neuronal differentiation of ESCs, while exogenous Igf2 could not accelerate the neuronal differentiation of PESCs. Although exogenous Igf2 promotes neuronal differentiation of normal ESCs, expression of endogenous $Igf2$ may be critical for initiating neuronal differentiation of pluripotent stem cells. The findings may contribute to understanding of the relationship between imprinting mechanism and neural differentiation and its application to neural tissue repair in the future.

Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis

  • Han, Jiahong;Dai, Min;Zhao, Yan;Cai, Enbo;Zhang, Lianxue;Jia, Xiaohuan;Sun, Nian;Fei, Xuan;Shu, Hui
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.291-299
    • /
    • 2020
  • Background: Ginseng (G) and Ligustrum lucidum Ait (LLA) are core traditional Chinese medicines in treating myelosuppression formula. The present study was designed to profile effect of G and LLA herb pair (G-LLA) on myelosuppressed mice. Methods: The mice myelosuppression model was established by intraperitoneal (i.p.) injection of cyclophosphamide (Cy). Hematopoietic function of bone marrow was measured by hemopoietic progenitor cell culture and peripheral blood count, and serum hemopoietic factors were tested by enzyme-linked immunosorbent assay. Bone marrow cell cycle was performed by flow cytometry. HPLC was used to measure 20 potential chemical components related to myelosuppression, including ginsenoside Rg1, Re, Rb1, Rc, Rb2, Rb3, Rd, Rk3, Rh4, 20 (S)-Rg3, 20 (R)-Rg3, Rk1, Rg5, salidroside, and so on. Results: G, LLA, and G-LLA improved the amount of peripheral blood cells and bone marrow cells of myelosuppressed mice (P < 0.01). They significantly increased the colony quantity of colony-forming unit-granulocyte macrophage, burst-forming unit-erythroid, colony-forming unit-erythroid, and colony-forming unit-megakaryocyte and amount of G2/M and S phase cells (P < 0.01). They also significantly decreased the amount of hematopoiesis-related cytokines (P < 0.01). The content of chemical components in G-LLA changed, and the change of rare saponin was the most obvious. Conclusion: These results show that G-LLA herb pair might produce synergistic or complementary compatibility effects on bone marrow suppression after chemotherapy. It suggests that the substance basis of G-LLA for treating bone marrow suppression may be effective chemical components.

Chondrogenesis of Mesenchymal Stem Cells Derived from Human Umbilical Cord Blood (사람 제대혈 유래 간엽줄기세포로부터 연골세포 분화)

  • Koh, Phil-Ok;Cho, Jae-Hyun;Nho, Kyoung-Hwan;Cha, Yun-Im;Kim, Young-Ki;Cho, Eun-Hae;Lee, Hee-Chun;Jung, Tae-Sung;Yeon, Seong-Chan;Kang, Kyung-Sun;Lee, Hyo-Jong
    • Journal of Veterinary Clinics
    • /
    • v.26 no.6
    • /
    • pp.528-533
    • /
    • 2009
  • In the current study, the mesenchymal stem cells (MSCs) isolated and propagated from the human umbilical cord blood (UCB) were tested for their capabilities of differentiation into chondrocytes in vitro. The mesenchymal progenitor cells (MPCs) collected from UCB were cultured in a low glucose DMEM medium with 10% FBS, L-glutamine and antibiotics. The human MSC colonies were positively stained by PAS reaction. When the immunophenotypes of surface antigens on the MSCs were analyzed by fluorescence-activated cell sorter (FACS) analysis, these cells expressed positively MSC-related antigens of CD 29, CD44, CD 90 and CD105, whereas they did not express antigens of CD14, CD31, CD34, CD45, CD133 and HLA-DR. Following induction these MSCs into chondrocytes in the chondrogenic differentiation medium for 3 weeks or more, the cells were stained positively with safranin O. We clearly confirmed that human MSCs were successfully differentiated into chondrocytes by RT-PCR and immunofluorescent stain of type-II collagen protein. These data also indicate that the isolation, proliferation and differentiation of the hUCB-derived MSCs in vitro can be used for elucidating the mechanisms involved in chondrogenesis. Moreover this differentiation technique can be applied to developing cell-based tissue regeneration or repair damaged tissues.