• Title/Summary/Keyword: profile development

Search Result 1,663, Processing Time 0.037 seconds

A Coverage Function for Arbitrary Testing Profile and Its Performance

  • Park Joong-Yang;Fujiwara Takaji;Park Jae-Heung
    • International Journal of Reliability and Applications
    • /
    • v.6 no.2
    • /
    • pp.87-99
    • /
    • 2005
  • Coverage-based software reliability growth models (SRGMs) have been developed and successfully applied in practice. Performance of a coverage-based SRG M depends on the coverage function employed by the SRGM. When the coverage function represents the coverage growth behavior well irrespective of type of the testing profile the corresponding coverage-based SRGM is expected to be widely applicable. This paper first conducts a study of selecting the most representative coverage functions among the available coverage functions. Then their performances are empirically evaluated and compared. The result provides a foundation for developing widely applicable coverage-based SRGMs and monitoring the progress of a testing process.

  • PDF

Development of Straightness, Roundness Measurement System for Standard Electrode of Loss Angle (손실각 표준기 전극의 진직, 진원도 측정시스템 개발)

  • 장종훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.198-203
    • /
    • 1998
  • To acquire the high precision of profile for standard electrode of loss angle, it is needed ultraprecision machining technology like MEAP(Magnetic Electronic Abrasive Polishing) and the very high profile measurement technology which can measure a micro unit about the workpiece. So, in this paper, it was developed the measurement system of precision of profile using non-contactable sensor that was approximate sensor of capacitance type, because that is better than others in the electrical characteristics. And standard electrode of loss angle was machined by the MEAP machining technology. In this study, it was development of precision measurement system. This system could be used measure the workpiece of roundness and straightness much more precise and faster than general mechanical measurement system done before. And it could be helped to minimize machining time and planning by very fast and precise measurement about the workpiece.

  • PDF

Radiometric Calibration Method with Compensation of Nonlinearity of Detector for Hyper-Spectral Camera

  • Yang, Ji-Hyeon;Choi, Byung-In;Park, Hee Duk;Kim, Sohyun;Park, Yong Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.27-34
    • /
    • 2017
  • In this paper, we propose a novel radiometric calibration method which can effectively compensate the nonlinearity of the detector for hyper-spectral camera. In general, the detector of hyper-spectral camera can produce nonlinear output depending on radiance and integral time. The conventional radiometric calibration methods extract the imprecise radiance profile from the spectral profile of the target due to this nonlinearity. In our proposed method, we use a quadratic equation instead of a linear equation to describe the relation between output of detector and radiance. Then, we use a fractional function to compensate variation of integration time. Thus, our proposed method can extract more precise spectral profile of radiance than conventional radiometric calibration method.

The necessary number of profile lines for the analysis of concrete fracture surfaces

  • Konkol, Janusz;Prokopski, Grzegorz
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.565-576
    • /
    • 2007
  • The article describes a technique for the measurement of the level of complexity of fracture surfaces by the method of vertical sections, and a performed statistical analysis of the effect of profile lines on the fractographic and fractal parameters of fractures, i.e. the profile line development factor, $R_L$, and the fracture surface development factor, $R_S$, (as defined by the cycloid method), as well as the fractal dimension, $D_C$, (as determined by the chord method), and the fractal dimension, $D_{BC}$, (as determined by the box method). The above-mentioned parameters were determined for fracture surfaces of basalt and gravel concretes, respectively, which had previously been subjected to fracture toughness tests. The concretes were made from mixtures of a water/cement ratio ranging from 0.41 to 0.61 and with a variable fraction of coarse aggregate to fine aggregate, $C_{agg.}/F_{agg.}$, in the range from 1.5 to 3.5. Basalt and gravel aggregate of a fraction to maximum 16 mm were used to the tests. Based on the performed analysis it has been established that the necessary number of concrete fracture profile lines, which assures the reliability of obtained testing results, should amount to 12.

Profile Simulation in Mono-crystalline Silicon Wafer Grinding (실리콘 웨이퍼 연삭의 형상 시뮬레이션)

  • Kim Sang Chul;Lee Sang Jik;Jeong Hae Do;Choi Heon Zong;Lee Seok Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.26-33
    • /
    • 2004
  • Ultra precision grinding technology has been developed from the refinement of the abrasive, the development of high stiffness equipment and grinding skill. The conventional wafering process which consists of lapping, etching, 1 st, 2nd and 3rd polishing has been changed to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Furthermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focuses on the flatness of the ground wafer. Generally, the ground wafer has concave pronto because of the difference of wheel path density, grinding temperature and elastic deformation of the equipment. Wafer tilting is applied to avoid non-uniform material removal. Through the geometric analysis of wafer grinding process, the profile of the ground wafer is predicted by the development of profile simulator.

Investigation of Performance Degradation of Shack Hartmann Wavefront Sensing Due to Pupil Irradiance Profile

  • Lee Jun-Ho;Lee Yaung-Cheol;Kang Eung-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • Wavefront sensing using a Shack-Hartmann sensor has been widely used for estimating wavefront errors or distortions. The sensor combines the local slopes, which are estimated from the centroids of each lenslet image, to give the overall wavefront reconstruction. It was previously shown that the pupil-plane irradiance profile effects the centroid estimation. Furthermore, a previous study reported that the reconstructed wavefront from a planar wavefront with a Gaussian pupil irradiance profile contains large focus and spherical aberration terms when there is a focus error. However, it has not been reported yet how seriously the pupil irradiance profiles, which can occur in practical applications, effect the sensing errors. This paper considered two cases when the irradiance profiles are not uniform: 1) when the light source is Gaussian and 2) when there is a partial interference due to a double reflection by a beam splitting element. The images formed by a Shack-Hartmann sensor were simulated through fast Fourier transform and were then supposed to be detected by a noiseless CCD camera. The simulations found that sensing errors, due to the Gaussian irradiance profile and the partial interference, were found to be smaller than RMS ${\lambda}/50$ when ${\lambda}$ is $0.6328\;{\mu}m$, which can be ignored in most practical cases where the reference and test beams have the same irradiance profiles.

An Automatic code generation through UML Meta modelling and transformation of Model for electronic government framework (UML 메타모델링과 모델의 변환을 통한 전자정부 표준 프레임워크 기반의 코드 생성 자동화)

  • Lee, Seung-Han;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3407-3411
    • /
    • 2015
  • In the process of extending the UML model for a various domain, comply with the UML metamodel and it is possible to obtain a number of advantages. However, the UML metamodel is necessary to redefine the diagram must be defined via the Profile in order to expand and transformation the UML metamodel from a variety of sources using the UML metamodel is becoming increase massive scale. it is necessary to use only those extracts the element relative to the target to be used to extend a UML metamodel. Used to re-define the extension of the UML Metamodel and Profile based UML modeling tools and metadata repositories by analysis tools, can develop more quickly and easily, by utilizing these tools can improve the quality of development in the SW industry. In this paper, we present an algorithm that of the profile through the expansion of the UML metamodel and shows the results in actually applying e-government standards framework.

Development of Dual Stage Profile Shifted Gear System with Bearing-Integrated Structure for High Reduction Ratio (고감속비를 가지는 베어링일체형 구조의 2단 전위 감속기의 개발)

  • Hwang, Il-Kyu;Choi, Jung-Soo;Jung, Moon-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.312-323
    • /
    • 2012
  • Planetary gearing is a gear system consisting of one or more planet gears, revolving about a sun gear. While the planetary gear system has many advantages- for example, high power density, large reduction in a small volume, multiple kinematic combinations, pure torsional reactions, and coaxial shafting, it has not been widely used because of its high bearing loads, inaccessibility, and design complexity. It is also necessary to shift several pairs of gear profiles at a same time. Therefore, designing profile shifted planetary gear system is a difficult and know-how dependent job. This study provides a practical solution to design a profile shifted gear system by the procedural design scheme, and proposes a bearing integrated structure of the dual stage profile shifted gear system with a robust output end. A dual stage profile shifted gear system with the bearing integrated structure is manufactured by the proposed design scheme in this study. This gear system is verified that it is good enough to commercialize, because it has high performance with high gear ratio and robust output end against axial and radial directional runouts in a small space.

Design Automation for Enterprise System based on .NET with Extended UML Profile Mechanism

  • Kum, Deuk-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.115-124
    • /
    • 2016
  • In this paper, a method to generate the extended model automatically on the critical elements in enterprise system based real time distributed architecture as well as the platform specific model(PSM) for Microsoft(MS) .NET platform is proposed. The key ideas of this method are real time distributed architecture should performed with satisfying strict constraints on life cycle of object and response time such as synchronization, transaction and so on, and .NET platform is able to implement functionalities including before mentioned by only specifying Attribute Code and maximizing advantages of MDA. In order to realize the ideas, functionalities which should be considered enterprise system development are specified and these are to be defined in Meta Model and extended UML profile. In addition, after definition of UML profile for .NET specification, by developing and applying these into plug-in of open source MDA tool, and extended models are generated automatically through this tool. Accordingly, by using proposed specification technology, the profile and tools easily and quickly reusable extended model can be generated even though low level of detailed information for functionalities which is considered in .NET platform and real time distributed architecture. In addition, because proposed profile is MOF which is basis of standard extended and applied, UML and MDA tools which observed MOF is reusable.

Review on the Human Powered Aircraft Development (인간동력 항공기 개발 고찰)

  • Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • Human powered aircraft (HPA) is an airplane that uses only human power for its propulsion. It's development is completely different from conventional aircraft that use fuels as a power source. In the present study, special features for the development of HPA are discussed by studying the design requirements, weight estimation, aerodynamics and propulsion studies, power analysis, and mossion profile design. It is found that the development of the HPA is completely different from conventional aircraft. Mission profile is crucial to the successful flight of the sport HPA when the pilots are changed.