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Wavefront sensing using a Shack-Hartmann sensor has been widely used for estimating wavefront
errors or distortions. The sensor combines the local slopes, which are estimated from the centroids
of each lenslet image, to give the overall wavefront reconstruction. It was previously shown that
the pupil-plane irradiance profile effects the centroid estimation. Furthermore, a previous study
reported that the reconstructed wavefront from a planar wavefront with a Gaussian pupil irradiance
profile contains large focus and spherical aberration terms when there is a focus error. However,
it has not been reported yet how seriously the pupil irradiance profiles, which can occur in practical
applications, effect the sensing errors. This paper considered two cases when the irradiance profiles
are not uniform: 1) when the light source is Gaussian and 2) when there is a partial interference
due to a double reflection by a beam splitting element. The images formed by a Shack-Hartmann
sensor were simulated through fast Fourier transform and were then supposed to be detected by
a noiseless CCD camera. The simulations found that sensing errors, due to the Gaussian irradiance
profile and the partial interference, were found to be smaller than RMS A/50 when A is 0.6328
um, which can be ignored in most practical cases where the reference and test beams have the

same irradiance profiles.

OCIS codes : 010.1080, 070.2580, 120.5050, 220.4840

I INTRODUCTION

Shack-Hartmann sensors have been extensively used
in a very wide range of applications including adaptive
optics [1], lens testing [2] and ocular aberrometry [3].
They measure wavefront aberrations by use of an array
of subapertures (lenslets). The lenslets focus light onto
a detector array, where the centroid of the spot formed
behind each lenslet is used as a measure of the phase
mean gradient in the subaperture. Different sources
including read-out noise, the finite CCD and window
size, misalignments and low-photon flux cause errors in
estimating the centroid and some studies were devoted
to decreasing the errors [4-10].

For adaptive optics applied to compensate atmos-
pheric distortions, the incoming wavefront can be assu-
med to have uniform intensity over the entrance pupil
without loss of measurement accuracy. However, there
are some applications, such as Gaussian beam, where
the pupil irradiance profiles cannot be considered to be

uniform anymore. A previous study reported that the
reconstructed wavefront from a planar wavefront with
a Gaussian pupil irradiance profile contains large focus
and spherical aberration terms. However, the aberrati-
ons were shown to arise only when there is a focus
error [11], which is contrary to our herein result that
a planar wavefront with a Gaussian pupil irradiance
causes in aberrations in reconstructed wavefront even
when there is no focus error.

In this paper, we simulated the effects of the variance
of pupil irradiance profile due to the characteristics of
laser sources and partial interferences, which are some-
times hard to remove in practical applications.

II. THEORETICAL DESCRIPTIONS AND ITS
SIMULATION

1. Theoretical descriptions

The centroid implies the measure of the first moment
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of the focal-plane irradiance pattern (Ij{u, v)) for each
subaperture, as shown in Fig. 1. Accordingly, the cent-
roid in the w-direction j in the th subaperture, designa-
ted CY, is calculated as:
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where the integration is over the entire region of the
focal plane associated with the jth subaperture. Eq. (1)
holds equally for the v component centroid, substitu-
ting » for v in the integral.

The centroid is related with the irradiance distri-
bution (J; (z, y)) and the spatial phase (¢, (z, y)) of the
impinging field as follows [12].

f W (z,y) I(z, y)V b, (z,y)dzdy
/ W (z, y (z, y)dfdy

(2)

where A is the wavelength of the light, fis the focal
length of the lens, v, ¢;(z, y) is the x-derivative of the
phase in the f th subaperture, W;(z, y) is the pupil
weighting function associated with the jth subaperture,
which is 1 inside the subaperture and 0 otherwise.

Eq. (2) can be simplified only when the pupil-plane
irradiance is uniform over the extent of the subaperture
as follows.
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where A, is the area of the subaperture area and
/ VK(?E, y)Vij)J(:E, y)dedy
A

s

ative of the phase in the j th subaperture.
Therefore the centroid is directly proportional to the
mean derivative of the phase only when the pupil-plane

is the mean average of x-deriv-
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FIG. 1. Schematic of the relationship between the
pupil plane and the image plane.

irradiance is uniform. Otherwise the centroid represents
the weighted average of the phase gradient over the
subaperture.

2. Computer simulation of image forming by an
array of microlens

The simulation arrangement consists of a circular
collimated optical field (A=0.6328 um) of 4.5 mm
diameter impinging on an array of square microlenses
with focal length of 7.6 cm and side length of 300 um
[13]. The CCD detector plane was placed at the focal
plane of the lens.

We first generate a circular entrance pupil function
Alx, y)ew(w’y) , where A(z,y) is the amplitude function
and ¢(z, y) is the phase function, into a 7680}7680
sampled rectangular matrix. Then each subaperture

W) s re-sampled into a

pupil function A, (z, yle
256256 rectangular matrix, which was centered into
a zero-padded 1024<1024 rectangular matrix, and the
image of each subaperture or Point Spread Function
(PSF) was computed through the Fast Fourier trans-
form of the subaperture pupil function. The image was
then supposed to be detected by a noiseless CCD camera
with 10 um pixel size. The all sub-aperture images
were then merged to give the CCD image by the array
of microlenses. The intensity maximum of the final
image was set to 256 to simulate an optimal use of the
detection dynamic range of the camera. Fig. 2 shows
6 major steps in the simulation. The similar simulation
method was used in simulating a pyramidal wavefront
sensor [15].

Step 1. Pup fuiction cenerotion (phase and intensiy) ~ Step 2 Sub-pupiluncion exracton  Step 3 Sub-pupil nction re-samgling
phase

FIG. 2. The simulation steps of image forming by an
array of microlenses.
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3. Computer simulation of image reconstruction

A pupil phase function ¢ can be represented by its
approximate conjugate ¢ that is the summation of Zer-
nike polynomials Zi (following Noll's definition [14]) as

b= %07 (4)

In this computer simulation, the Zernike coefficients
a; were reconstructed from minimizing the RMS (root
mean square) centroids errors as given by Eq. (5) and
30 Zernike polynomials were used in the calculation.
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the j-th subaperture of the test and the reference beams
in u-direction, respectively. Eq. (6) holds equally for the
v component centroid, substitution u for v.

Since the test beam and reference beam might have
different irradiance due to the different light sources or
the different optical paths, the following simulations
were performed for two different cases: 1) when the
reference beam is a planar wavefront with an uniform
intensity profile and 2) when the reference beam is a
planar wavefront with intensity profiles identical to the
those of the test beam.

. THE EFFECT OF GAUSSIAN PUPIL
IRRADIANCE PROFILE IN WAVEFRONT
SENSING

A wavefront with a Gaussian irradiance profile has

) ip(z,y)

the entrance pupil function Alz, y)e given as
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(a) Relative intensity at the edge while the relative
beam width w changes.

FIG. 3. The relative intensity variation.

follows
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where A is the peak intensity and w is the relative
beam radius at A(z,y) = Ay/e referred to the pupil
radius, which is called as ‘relative Gaussian beam width’.
Fig. 3 (a) shows the relative intensity at the edge of
the pupil to the peak intensity as the relative Gaussian
beam width w varies. Fig. 3 (b) shows the relative int-
ensity variation across the pupil when the relative
beam width w is 1.2. In this case there is 50% relative
intensity difference at the edge.

1. When the reference beam is a planar wavefront
with a uniform intensity profile

The reference beam here was assumed to be ideal ie.,
a planar wavefront with a uniform intensity profile.
The test beams had Gaussian irradiance profile with
seven phase fields: plane (Z1), tilt (Z2), defocus (Zd),
coma (Zs), astigmatism (Z7), trefoil (Zy) and spherical
aberration (Zi1). The seven phase fields are of Zernike
polynomials and each magnitude of the field is the
coefficient of the corresponding Zernike polynomial.
The relative Gaussian beam width varied from 0.6 to
4.0 with a step of 0.2. Fig. 4 shows the centroid move-
ments and its reconstructed phase when the relative
Gaussian width is 4. From this figure, it is quite clear
that even a planar wavefront with a Gaussian irradiance
profile can cause focus errors in wavefront sensing.

The sensing errors or phase differences (e =¢—¢)
were decomposed by Zernike polynomials as shown in
Fig. 5. The sensing errors were found to be independent
of phase fields. However, the sensing errors were mainly
defocus errors, whose amplitude decreased as the relative
Gaussian beam width increased. Fig. 6 shows the RMS

Relative intensity
o
»

-1 08 06 04 402 g 02 04 06 08 1
Relathe radal distance

(b) Relative intensity across the pupil when the relative
beam width w =1.2.
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(a) The centroid movements.

0o
(b) 3D phase field.

FIG. 4. The centroid movements and its reconstructed phase field for a plane wavefront of Gaussian pupil irradiance

profile with the relative Gaussian beam width=4.
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(a) Decomposed Zernike coefficient of the sensing errors.
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(b) Amplitude of defocus errors in the sensing errors.

FIG. 5. The decomposed Zernike cocfficients of the sensing errors or phase difference s(e = ¢— ¢) when the relative
Gaussian beam varied from 0.6 to 4.0 and the coefficients of its major component focus error.
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FIG. 6. The RMS wavefront sensing errors in unit of
‘wavelengths for the incoming wavefront with a Gaussian
irradiance profile and seven different phase functions;
plane (Z1), tilt (Z,), defocus (Z4), coma (Zs), astigmatism
(Z7), trefoil (Zo) and spherical aberration (Zi).

(root mean squared) sensing errors in unit of wave-
lengths for the seven phase entrance functions, which
can be equated by a best-fit exponential function as
follows:

RMS = 10" 2% when w > 1 8)

From Eq. (8), the sensing error due to the Gaussian
intensity profile is found to be smaller than A\/100
RMS for low order phase distortions, which can be
ignored in most practical applications.

2. When the reference beam is a planar wavefront
with an intensity profile identical to that of the
test beam

Here the reference beam was considered to have the
same irradiance profile with the test beam. Fig. 7 shows
the decomposed sensing errors for the defocus phase
field. The sensing errors for the other phase fields were
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Order of Zermike Poiynonials Relative Gaussian beam width

FIG. 7. The decomposed Zernike coefficients of the
sensing errors or phase difference s(e = ¢—¢) when the
relative Gaussian beam width varied from 0.6 to 4.0. The
reference and test beam had identical Gaussian irradiance
profiles.

almost the same. The RMS sensing errors were all
smaller than A/1000 RMS when the relative Gaussian
beam width w > 1.

IV. THE EFFECT OF PARTIAL
INTERFERENCES IN WAVEFRONT SENSING

Shack Hartmann sensors have more than one beam
splitting element. The beam splitting elements can cause
double reflection resulting in the interference in the
entrance pupil function and the CCD plane. In most

(a) Fringe pattern.

cases, the double-reflected beam has weaker intensity
but has tilted phase. Here we use the contrast as defined
as follows to quantify the amount of partial interference.

I

max _ “‘min

= ©
]max + Imin

where In.x and I, are the maximum and minimum

intensity of partially interfered pupil function.

1. When the reference beam is a planar wavefront
with a uniform intensity profile

The reference beam here was assumed to be ideal
i.e., a planar wavefront with a uniform intensity profile.
The test beams had uniform irradiance profile with
seven phase fields: plane (Z;), tilt (Z2), defocus (Z4),
coma (Zs), astigmatism (Z7), trefoil (Zy) and spherical
aberration (Z11), and the test beams were assumed to
be interfered with by their own double-reflected beams.
Tilting the original pupil profiles by the amount of 4Z,,
which causes about 2 fringes, generated by the double-
reflected beams. The relative amplitude of the double-
reflected beam was changed from 0.2 to 1.0 to change
the contrast of the interference.

Fig. 8 shows the fringe pattern and intensity variation
at the entrance pupil plane of the Shack-Hartmann
sensor when the contrast is 1. Fig. 9 shows the sensing
errors or phase difference (e = ¢—@) in terms of Zernike
polynomial decomposition as the contrast varied. (The
sensing errors were found to be independent ofn the
phase fields.). Therefore, when there is a tilted inter-
ference in the Shack-Hartmann pupil plane, the infor-
mation on the tilts should be considered to have errors
due to the interferences.

1

09

0.8

0.7

0.6+

0.5+

0.4+

0.3

0.2r

0.1}

o L i L 1 1 1 1
-1 08 06 04 02 ] 02 04 068 08 1

(b) Intensity variation across the pupil.

FIG. 8. Exampled fringe pattern and intensity variation at the entrance pupil plane of the Shack-Hartmann sensor
when the beam was interfered with a double-reflected beam. (Contrast=1.0, Tilt=275)
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(a) Decomposed sensing errors.

(b) Reconstructed wavefront when the contrast is 1.

FIG. 9. Centroid movements and reconstructed wavefront when a planar wavefront was interfered with a double-

reflected beam. (Contrast=1.0, Tilt=27,)
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(b) RMS wavefront errors.

FIG. 10. Zernike polynomials of sensing errors or phase difference (e =¢—@) and RMS wavefront errors as the

contrast changed from 0.2 to 1.0.

2. When the reference beam is a planar wavefront
with an intensity profile identical to that of the
test beam

Here the reference beam was considered to have the
same irradiance profile with the test beam. Fig. 10 (a)
shows the decomposed sensing errors for the defocus
phase field. The sensing errors for the other phase fields
were almost the same. Fig. 10 (b) shows the RMS sen-
sing errors as the contract changes from 0.2 to 1.0. The
RMS sensing errors for all phase fields were found to
be smaller than A/50 RMS.

V. CONCLUSION

When the Shack-Hartmann wavefront sensing is
performed, the optical layout is usually designed to
provide the uniform irradiance profiles at the entrance

pupil of the Shack-Hartmann sensor. However, there
are some cases when the non-uniformity in the irradiance
is inevitable. The most frequent cases are due to Gaus-
sian irradiance profile of a laser and due to the partial
interference formed by a double-reflection by beam split-
ting elements.

This paper found that the sensing errors for low-order
phase fields are smaller than A/50 RMS in the most
practical cases where the test and the reference beams
have identical irradiance profiles.

Further researches should follow to investigate the
sensing errors under some special conditions such as
when there is a significant difference in the beam inten-
sity profiles between the reference and test beams or
when the intensity of the sensing noise cannot be ignored
compared to that of the beams.
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