• Title/Summary/Keyword: production-to-biomass ratio

Search Result 177, Processing Time 0.023 seconds

Distribution of Biomass and Production of Robinia pseudoacacia Plantation in Korea (아까시나무조림지(造林地)의 물질생산량(物質生産量)에 관(關)한 연구(研究))

  • Kim, Kap Duk;Kim, Tae Wook;Lee, Kyong Jae;Kim, Joon Seon
    • Journal of Korean Society of Forest Science
    • /
    • v.68 no.1
    • /
    • pp.60-68
    • /
    • 1985
  • To study the comparison of the aboveground biomass of Robinia pseudoacacia L. of 8-, 13- and 20-year-old plantations, the experimental plot of $100m^2$ in size located in Youngin-gun were selected. Seven sample trees at different stand ages selected taking account of DBH distribution were felled and the diagram of oven-dry weight distribution of stem, branch and leaf for each 1m segment was constructed. The dry weight of each part of plots was estimated by the method of basal area ratio. If the estimations are extended to a hectare area stand, it contains 36.72, 69.28 and 118.67 tons of the aboveground standing crops in 8-, 13- and 20- year-old stand respectively. The net production was estimated to be as much as 12.56, 13.23 and 16.78 tons per hectare per year and the net assimilation ratio 3.66, 4.13 and 2.50 kg/kg/yr in 8-, 13- and 20-year-old stand respectively. And the efficiency of leaves to produce stem was 1.69, 2.10 and 0.96 kg/kg/yr in same order.

  • PDF

On the Spatio-temporal Distributions of Nutrients and Chlorophyll a Concentration, and the Environmental Factors on the Variation of Phytoplankton Biomass in the Shiahae, Southwestern Part of Korean Peninsula (시아해의 수질환경과 식물플랑크톤 생물량의 시ㆍ공간적 분포특성과 기초생물량변동에 영향을 미치는 환경특성)

  • 윤양호
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.77-93
    • /
    • 2000
  • Field survey on the spatio-temporal distribution of water quality and chlorophyll a concentration, and the environmental factors on the variation of phytoplankton biomass were carried out at the 23 stations for four seasons in the Shiahae, southwestern coast of Korean Peninsula from February to October in 1995. I made an analysis on biological factor as chlorophyll a concentration as well as environmental factors such as water temperature, salinity and nutrients; ammonia, nitrite, nitrate, dissolved inorganic nitrogen, phosphate, N/P ratio, silicate and Si/P ratio. The waters in the Shiahae were not stratified due to the tidal mixing and high velocity of tidal current. And the high productivity in photic layer were supported by high nutrients concentration from freshwater on lands and bottom waters The low depth of transparency in the Shiahae had a bad influence upon primary production and marine biology. In Shiahae had a sufficient nutrients for primary production during a year. Especially dissolved inorganic nitrogen and silicate were high, the other side, phosphate was low. The source of nutrients in summer and silicate supply depend on input of freshwater from lands, the other side, dissolved inorganic nitrogen and phosphate were depend on rather supplied from bottom layer by the mixing and input of seawater from outside than input of freshwater from lands. Phosphate seemed to become a limiting nutrient for the primary production at all area of Shiahae in winter and at the northern parts in other seasons. However, dissolved inorganic nitrogen seemed to do it at the southern parts in other seasons except winter. Silicate didn't become a limiting nutrient for diatoms in Shiahae. Phytoplankton biomass as measured by chlorophyll a concentration was very high all the year round, it was controlled by the combination of the several environmental factors, especially of nitrogen, phosphorus and the physical factors such as light intensity. [Spatio-temporal distribution, Seasonal fluctuation, Nnutrients, Chlorophyll a, Environmental factors, Nutrient source, Limiting Nutrient, Light, Shiahae] .

  • PDF

Evaluation of carbon flux in vegetative bay based on ecosystem production and CO2 exchange driven by coastal autotrophs

  • Kim, Ju-Hyoung;Kang, Eun Ju;Kim, Keunyong;Jeong, Hae Jin;Lee, Kitack;Edwards, Matthew S.;Park, Myung Gil;Lee, Byeong-Gweon;Kim, Kwang Young
    • ALGAE
    • /
    • v.30 no.2
    • /
    • pp.121-137
    • /
    • 2015
  • Studies on carbon flux in the oceans have been highlighted in recent years due to increasing awareness about climate change, but the coastal ecosystem remains one of the unexplored fields in this regard. In this study, the dynamics of carbon flux in a vegetative coastal ecosystem were examined by an evaluation of net and gross ecosystem production (NEP and GEP) and $CO_2$ exchange rates (net ecosystem exchange, NEE). To estimate NEP and GEP, community production and respiration were measured along different habitat types (eelgrass and macroalgal beds, shallow and deep sedimentary, and deep rocky shore) at Gwangyang Bay, Korea from 20 June to 20 July 2007. Vegetative areas showed significantly higher ecosystem production than the other habitat types. Specifically, eelgrass beds had the highest daily GEP ($6.97{\pm}0.02g\;C\;m^{-2}\;d^{-1}$), with a large amount of biomass and high productivity of eelgrass, whereas the outer macroalgal vegetation had the lowest GEP ($0.97{\pm}0.04g\;C\;m^{-2}\;d^{-1}$). In addition, macroalgal vegetation showed the highest daily NEP ($3.31{\pm}0.45g\;C\;m^{-2}\;d^{-1}$) due to its highest P : R ratio (2.33). Furthermore, the eelgrass beds acted as a $CO_2$ sink through the air-seawater interface according to NEE data, with a carbon sink rate of $0.63mg\;C\;m^{-2}\;d^{-1}$. Overall, ecosystem production was found to be extremely high in the vegetated systems (eelgrass and macroalgal beds), which occupy a relatively small area compared to the unvegetated systems according to our conceptual diagram of a carbon-flux box model. These results indicate that the vegetative ecosystems showed significantly high capturing efficiency of inorganic carbon through coastal primary production.

The Effect of Nutritional Balance between Carbon and other Nutrient Sources on the Growth of Sporobolomyces holsaticus (탄소원과 다른 영양원간의 영양균형이 Sporobolomyces holsaticus의 균체생육도에 미치는 영향)

  • Park, Wan-Soo;Koo, Young-Jo;Shin, Dong-Hwa;Min, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 1983
  • Direct production of biomass from starch using amylolytic yeast, Sporobolomyces holsaticus FRI Y-5 was studied with varying the ratios between carbon and other nutrient sources in the medium. It was investigated under condition of constant C/P and C/S ratio to influence the initial concentration of starch $(S_o)$ and C/N ratio on its growth which is described as the specific growth rate $({\mu})$, cell yield (Y), the maximum concentration of cell $(X_m)$, and productivity (P). They were very dependent on both $S_o$ and C/N ratio. The form of the relationship between and ${\mu}$ and $S_o$ was observed to be similar to saturation kinetics at C/N = 100 but presented substrate inhibition at other C/N ratios. As $S_o$ was changed from 22.5 to 90 g/l, Y was observed to vary with C/N ratios but seemed to decrease as a wholes. $X_m$ was linearly related to $S_o$ at more than C/N = 50 but at less than C/N = 10 substrate inhibition was presented. P increased suddenly to $S_o$ = 45 g/l and then changed decreasingly at less than C/N = 50, but at more than C/N = 100 it changed increasingly. The effect of C/P ratio and C/S ratio on the yeast growth was also investigated at constant $S_o$ and C/N ratio. ${\mu}$ was dependent on C/P and C/S ratios, but Y, independent on them. But $X_m$ was reliant upon C/P ratio but not upon C/S ratio.

  • PDF

Usefulness of Freshwater Alga Water-net (Hydrodictyon reticulatum) as Resources for Production of Fermentable Sugars (발효 당용액 생산자원으로서 담수조류 그물말의 유용성)

  • Kim, Seul-Ki;Hwang, Hyun-Jin;Kim, Jae-Deog;Ko, Eun-Hye;Choi, Jung-Sup;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.32 no.2
    • /
    • pp.85-97
    • /
    • 2012
  • To investigate the usefulness of freshwater alga Water-net (Hydrodictyon reticulatum, HR) as resources for production of fermentable sugars, the easiness of enzymatic saccharification was evaluated at first. When 6 plant materials (HR, Spirulina, Chlorella, Scenedesmus, Cladophora, Corn stover) were enzymatically hydrolyzed with 2% solid loading at the same condition, HR showed the highest ratio of saccharification based on glucose production. No milled HR was also completely saccharified at the amounts of optimal enzyme mixture. Glucose yield was not changed though the citrate buffer strength for saccharification was decreased from 0.1 M to 0.1 mM. Only about 10% yield reduction was observed compared to that of $120^{\circ}C$ treatment when HR was enzymatically hydrolyzed at room temperature. The saccharification was normally occurred at $37^{\circ}C$ and pH 6.5 which is general growth condition of fermentable microrganisms, suggesting that HR have a biomass characteristics applicable for the simultaneous saccharification and fermentation. The saccharification was occurred by more than 70~80% of one of the best condition although the supplied enzyme amounts was reduced to 1/10 volume. And the glucose yield by enzymatic hydrolysis was not decreased by 10% HR solid loading and began to decrease at more than 15% solid contents. Above these results show that HR is an interesting algal biomass which is relatively easy to be saccharified by hydrolyzing enzymes. In addition, HR is a flilamentous alga and very easy to be collected. Therefore, HR seems to be an useful and valuable resources in the economical production of fermentable sugars for manufacture of bio-chemical products.

Characteristics of Acid-hydrolysis and Ethanol Fermentation of Laminaria japonica (다시마의 산 가수분해와 에탄올 발효 특성)

  • Na, Choon-Ki;Song, Myoung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In order to study the utilization of brown seaweed Laminaria japonica as an alternative renewable feedstock for bioethanol production, the properties of acid hydrolysis and ethanol fermentation were investigated. The acid hydrolysis enhanced the final yield of fermentable sugars, which led great increase of ethanol productivity. The maximum yield of reducing sugars reached 135 mg/g-dry Laminaria japonica after 1.0N sulfuric acid-hydrolysis at $130^{\circ}C$ for 6 h. The Saccharomyces cerevisiae (ATCC 24858) could ferment $C_6$-sugars like glucose, galactose and mannose into ethanol, but not $C_5$-sugars like arabinose and xylose. Optimal fermentation time varied with sugars; 48 h for glucose, 72 h for galactose, and 96 h for mannose. Nevertheless, the ethanol yield from the hydrolysate reached 242 mg/g-dry Laminaria japonica after fermentation by the S. cerevisiae at $35^{\circ}C$ for 96 h, which corresponds to approximately 4 times more than the theoretical yield from total reducing sugars in the hydrolysates. It indicates that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. The ethanol concentration linearly increased from 2.4 to 9.2 g/L, while the ethanol yield per dry weight of biomass decreased from 242 to 185 mg/g, with increasing the ratio of biomass to acid solution from 1 to 5% (w/v). The bioethanol yield estimated was approximately 7,400~9,600 kg/ha/year, and indicated that Laminaria japonica is a promissing feedstock for bioethanol production.

Weed Distribution and Its Plant Sociological Aspects on the Polder Land (간척지(于拓地)의 잡초발생(雜草發生) 및 분포의 식물사회학적(植物社會學的) 해석연구(解析硏究))

  • Lee, J.Y.;Guh, J.O.;Chang, H.S.;Bae, S.H.
    • Korean Journal of Weed Science
    • /
    • v.4 no.2
    • /
    • pp.135-142
    • /
    • 1984
  • To obtain the basic information for weed management in polder land, a colligated assessment on weed distribution and it`s plant sociological indices on Gyewha polder land were arranged. At the situation of assessment, the Gyewha polder land was reclaimed with aim with paddy-rice production. As a result of reclamation, the salinity of most soil samples were below 0.3%, and acidity ranged from pH 5.5 to 6.5. Total weed species were counted as much as 17 species (3 gramineae, 7 cyperucese, and 8 broad-leaved species), and a most dominant species, Scirpus maritimus, were succeeded with Monochoria v., Eleocharis a., and Cyperus d., etc. by reclamation. Declining of soil salinity and soil pH, the number of weed species, individuals, biomass, species diversity, evenness, sociability index were increased, but the population particularity was weaken in tendencies. By developing of reclamation, the weed species which is summer annual broad leaf, wind and water disseminating, and tussock formed species are increased instead of salt-resistant, perennial cyperus, and rhizomatous extending species.

  • PDF

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

Trends and Prospects of Microfibrillated Cellulose in Bio-industries (마이크로피브릴화 셀룰로오스를 이용한 바이오산업의 동향)

  • Jung, Young Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this review, we focus on one of the most attractive biomaterials, microfibrillated cellulose (MFC). MFC, a type of nanocellulose, mainly originates from cellulose in lignocellulosic biomass. MFC represents one of incredible important natural resources due to its abundancy, renewability, and sustainability. MFC is produced through mechanical pretreatment, and it is composed of various sizes of microfibers, ranging from a few nanometers to a few micrometers. Because of the heterogenetic compositions of MFC, it possesses superior properties as a material, such as high surface area, high aspect ratio, and peculiar insolubility as a biomaterial. These properties allow MFC to be used in various bio-industries, from the traditional pulp industry to the high-tech food/bio/chemical/medical industries. However, it is difficult to use MFC on a commercial scale owing to the high energy input required during its production and the challenge of controlling its reactivity. Therefore, future studies should be focused on accurately characterizing MFC's surface morphologies, regulating its characteristics in a desirable direction, and standardizing proper guidelines for the analysis of surface morphologies its analysis.

Production Method of Biochar-bead from Biochar Powder and Its Application for the Removal of Heavy Metal (분말 바이오-숯으로부터 중금속 오염수 처리용 바이오-숯 비드 제조 및 적용)

  • Choi, Yu-Lim;Roh, Hoon;Lee, Kyu-Beom;Shin, Bok-Su;Joo, Wan-Ho;Kim, Nam-Kook;Kim, Jin-Hong;Yang, Jae-Kyu;Reddy Koduru, Janardhan;Cho, Sung-Heui;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.127-132
    • /
    • 2015
  • In this study, biochar-bead, prepared from biochar powder derived from woody biomass, was used for removal cadmium ion in aqueous solution. Various mixing ratios of alginate solution and biochar powder were used for the production of round shape biochar-bead. An optimum mixing ratio was selected as 1.5% alginate solution and 20 wt% biochar. The produced biochar-bead was characterized by SEM, FT-IR, and XRD analyses. The adsorption capacity of Cd(II) by biochar-bead was found to be 9.72 mg/g which was higher than that by GAC and PAC. According to this study, round shape biochar-bead is expected to be used as a media for reactive barrier or water filtration.