• Title/Summary/Keyword: production rate

Search Result 7,879, Processing Time 0.036 seconds

Hydrogen Gas Production from Biogas Reforming using Plasmatron (플라즈마트론을 이용한 바이오가스 개질로부터 수소생산)

  • Kim, Seong Cheon;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.528-534
    • /
    • 2006
  • The purpose of this paper is to investigate the optimal operating condition for the hydrogen production by biogas reforming using the plasmatron induced thermal plasma. The component ratio of biogas($CH_4/CO_2$) produced by anaerobic digestion reactor were 1.03, 1.28, 2.12, respectively. And the reforming experiment was performed. To improve hydrogen production and methane conversion rates, parametric screening studies were conducted, in which there are the variations of biogas flow ratio(biogas/TFR: total flow rate), vapor flow ratio($H_2O/TFR$: total flow rate) and input power. When the variations of biogas flow ratio, vapor flow ratio and input power were 0.32~0.37, 0.36~0.42, and 8 kW, respectively, the methance conversion reached its optimal operating condition, or 81.3~89.6%. Under the condition mentioned above, the wet basis concentrations of the synthetic gas were H2 27.11~40.23%, CO 14.31~18.61%. The hydrogen yield and the conversion rate of energy were 40.6~61%, 30.5~54.4%, respectively, the ratio of hydrogen to carbon monoxide($H_2/CO$) was 1.89~2.16.

An Empirical Analysis on the Production Cost of Landscape Crops in the Direct Payment Program for Rural Landscape Conservation (경관보전직접지불제 작물의 생산비 실증분석)

  • Kim, Kwang-Nam;Kim, Mi-Young;Lee, Hyung-Soon
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.3
    • /
    • pp.19-26
    • /
    • 2010
  • The purpose of this paper is to evaluate optimum rate of payment and to [md the new advanced direction for the program for rural landscape conservation. We used direct evaluation method for income and production costs. According to the survey, we had done from 41 complexes(farmers) joined this program, the average production cost of landscape crops of type1 is calculated at 178,582 won per 10a and 111,517 won as type2. If the classification of crop type is adjusted, the problem formulated is improved to make possible support at the current payment rate.

Comparison of Methods for the Measurement of Bacterial Production in a Lake Ecosystem (호수 생태계에서 세균 생산량 측정 방법의 비교)

  • 김명운;강찬수;김상종
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.318-323
    • /
    • 1990
  • The bacterial secondary production was measured at 6 sites of Lake Soyang in October, 1989 by $^{3}$H-thymidine incorporation rate. Verfication for the method of bacterial secondary production measurement showed that $^{3}$H-thymidine incorporated into DNA, RNA and protein by average percentage of 38.45, 42.27 and 20.07%, respectively. THe more increased incoporated $^{3}$H-thymidine, the more increasde DNA fraction, but protein fraction was generally low. Incorporation of rate of /usp 3/H-thymidine. $^{3}$H-leucine into protein correlated with protein fraction of incorporated $^{3}$H-thymidine. Conversion factors were calculated as follows; $1.83*10 ^{20}$ cells/moles of thymidine incorporated/hr and 1.69*10$^{22}$ cells/moles of leucine incorporated/hr.

  • PDF

Kinetics of L-Phenylalanine Production by Corynebacterium glutamicum (Corynebacterium glutamicum에 의한 L-Phenylalanine 생산의 동역학적 특성)

  • 김동일
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.125-131
    • /
    • 1990
  • Microbial production of L-phenylalanine using Corynebacterium glutamicum ATCC 21674, a tyrosine auxotroph resistant to aromatic amino acid analogues, has been studied and kinetic analysis was performed. Even though the strain was reported as a tyrosine auxotroph, it produced tyrosine and was able to grow on the minimal medium where no tyrosine was present. The average specific growth rate at the exponential growth phase was 0.087 hr-1. There was a dissociation of growth from the formation of the product. Linear correlation between biomass production and total CO2 production was obtained. The relationship between CO2 evolution rate and sugar consumption rate was also found to be linear.

  • PDF

A Study on the Correlation of Analysis between Flashover and Smoke Production Rate in Building Structure (건축구조물에 있어서 플래시오버와 연기발생량의 상관관계 분석에 관한 연구)

  • Seo, Dong-Goo;Kim, Dong-Eun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.236-237
    • /
    • 2013
  • The fire safety design of performance is fire behavior inside buildings must be scientifically described and systemized as a theory, thereby allowing application to fire safety design of buildings. In this study, experiment of fire behavior according to disposition of combustibles were performed for correlation analysis between flashover and smoke production rate in building structure. As a result, smoke production rates is happened more than 80 m2/s in compartment(ISO 9705). Also, even if the fire load for flashover to if occur smoke did not, which confirmed that the delay time of occurrence.

  • PDF

Biofuel Production by Immobilized Living Cells - Hydrogen Production by Photosynthetic Bacteria - (고정화 미생물에 의한 에너지 생산 - 광합성 박테리아에 의한 수소 생산 -)

  • 조영일;선용호
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.303-309
    • /
    • 1985
  • Continuous production of hydrogen by Ca alginate-immobilized photosynthetic bacteria was studied in a packed-bed bioreactor. The dilution rate and input concentration of carbonaces substrate were selected as operating parameters. To choose the strain for immobilization, hydrogen productivities of Rhodopseudomonas caposulata 10006 and Rhodospirillum rubrum KS-301 were compared through preliminary batch cultures of their free cells: the former was found to show better hydrogen productivity in spite of its lower specific growth rate. For the continuous production of hydrogen by immobilized R capsulata, the optimum dilution rate was about 0.84 h$^{-1}$ . The Immobilized tells gave better hydrogen yield and conversion efficiency than free ones. And a kinetic parameter K'$_{m}$ was determined for the packed-bed bioreactor, being practically constant for a specific range of dilution rates.s.

  • PDF

Influence of Yeast-treated Rice By-products on Growth, Yield and Grain Quality of Rice

  • Seo, Pil Dae;Nunez, John Paolo;Park, Jae Sang;Ultra, Venecio U. Jr.;Lee, Sang Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • The use of agricultural by-products as alternative nutrient sources in crop production had gained popularity in order to reducing the rate of chemical fertilizer application in the field. This study was conducted to determine whether the application of rice milling by-products treated with yeast inoculants could substitute, or reduce the rate of chemical fertilizer application. The results of agronomic measurements showed that the effect of incorporated materials was not immediate, as compared to 100% chemical fertilizer application. However, grain yield and quality was either the same or greater than 100% chemical fertilizer application. It was found out that expanded rice hull (treated with yeast or not) could reduce the rate of applying chemical fertilizers by half. Also, yeast treatment was only favorable only to expanded rice hull and not with rice bran, and was already found to be a potential material in reducing chemical fertilizer application in rice production.

Long-Term Performance of Lab-Scale High Temperature Electrolysis(HTE) System for Hydrogen Production (Lab-scale 고온전기분해 수소생산시스템의 장기운전 성능평가)

  • Choi, Mi-Hwa;Choi, Jin-Hyeok;Lee, Tae-Hee;Yoo, Young-Sung;Koh, Jae-Hwa
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.641-648
    • /
    • 2011
  • KEPRI (KEPCO Research Institute) designed and operated the lab-scale high temperature electrolysis (HTE) system for hydrogen production with $10{\times}10cm^2$ 5-cell stack at $750^{\circ}C$. The electrolysis cell consists of Ni-YSZ steam/hydrogen electrode, YSZ electrolyte and LSCF based perovskite as air side electrode. The active area of one cell is 92.16 $cm^2$. The hydrogen production system was operated for 2664 hours and the performance of electrolysis stack was measured by means of current variation with from 6 A to 28 A. The maximum hydrogen production rate and current efficiency was 47.33 NL/hr and 80.90% at 28 A, respectively. As the applied current increased, hydrogen production rate, current efficiency and the degradation rate of stack were increased respectively. From the result of stack performance, optimum operation current of this system was 24 A, considering current efficiencies and cell degradations.

Study on Standardization Methods for Reducing Revision Rate of Hull Production Design

  • An, Tae-Hyun;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.125-131
    • /
    • 2022
  • Structural design for shipbuilding is generally divided into three stages: the basic, detailed, and production designs, of which the production design is the most frequently revised among the three design stages. The revision involved in production design department was approximately 61% of the total 4,211 revision members and approximately 56% of the total 710 revision cases in the survey on the number of design revisions for nine ships. In this study, members and drawings with a high revision rate were investigated, and related design departments were identified. In addition, the work contents of the design department were analyzed to reduce the number of design revisions and three tasks are very frequently revised were selected. A survey was conducted with engineers engaged in the production design, after which, standards were proposed for the method of aggregating bills of materials, to employ macros to calculate the length of members and that of profile input data when reviewing drawings. Via the study, it was determined that the major causes of design revision are simple mistakes by engineers or lack of understanding on structural arrangement of basic members more than intricacies of prior design and high level specification. As a result of applying the proposed standards, it was confirmed that the design revision was reduced by approximately 40%.

Thermophilic Anaerobic Digestion of Polyhydroxybutyrate with and without Thermo-alkaline Pretreatment (열적-알칼리성 전처리 유무에 따른 폴리하이드록시부티레이트의 고온 혐기성 소화 영향 연구)

  • Jihyeon Lee;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.121-129
    • /
    • 2024
  • The study investigated the effect of thermo-alkaline pretreatment on the solubilization of polyhydroxybutyrate (PHB) and its potential to enhance of thermophilic anaerobic digestion, focusing on biochemical methane potential (BMP) and methane production rate, using two different particle sizes of PHB (1500 ㎛ and 400 ㎛). Thermo-alkaline pretreatment tests were conducted at 90 ℃ for 24 hours with varying NaOH dosages from 0-80% (w/w). BMP tests with untreated PHB exhibited methane production ranging from 150.4~225.4 mL CH4/g COD and 21.5~24.2 mL CH4/g VSS/d, indicating higher methane production for smaller particle sizes of PHB, 400 ㎛. Thermo-alkaline pretreatment tests achieved a 95.3% PHB solubilization efficiency when 400 ㎛ PHB particles were treated with 80% NaOH dosage at 90 ℃ for 24 hours. BMP tests with pretreated PHB showed substantial improvement in thermophilic anaerobic digestion, with an increase of up to 112% in BMP and up to 168% in methane production rate. The results suggest that a combined pretreatment process, including physical (400 ㎛ PHB particles) and thermo-alkaline (90 ℃, 40-80% NaOH dosage, and 24 hours reaction time), is required for high-rate thermophilic anaerobic digestion of PHB with enhanced methane production.