• 제목/요약/키워드: product size

검색결과 1,936건 처리시간 0.024초

자아이미지 일치성이 소매점자산과 고객의 재이용의도에 미치는 영향 (The Effect of Retailer-Self Image Congruence on Retailer Equity and Repatronage Intention)

  • 한상린;홍성태;이성호
    • 한국유통학회지:유통연구
    • /
    • 제17권2호
    • /
    • pp.29-62
    • /
    • 2012
  • 최근 유통환경과 소비자 라이프스타일의 변화 속에서 단순히 제품을 판매하고 유통시키는 것에 그치는 것이 아닌 소매점자산을 증대시켜 고객을 획득하고 유지할 수 있는 차별화된 경쟁우위가 필요하게 되었으며, 이러한 대안으로 소매점 이미지의 중요성이 날로 커지고 있다. 이에 따라, 본 연구는 소매점의 이미지와 자아이미지 일치성이라는 요인과 고객기반 소매점자산과의 구조적관계를 조사하여 소비자들의 재이용의도에 어떠한 영향을 미치는지를 알아보고자 하였다. 본 연구의 가장 큰 학문적 기여점은 소매점자산에 영향을 주는 자아이미지일치성이라는 선행 요인을 찾아내는데 있으며, 또한 소매점자산이 재이용의도에 강력한 선행요인임을 확인하는데 있어서 기존의 연구들이 보여준 Second-order Construct 유형의 소매점자산척도와 결과 변수간의 단일차원 인과관계가 아닌, 소매점자산을 구성하는 각각의 요인들과 재이용의도의 좀 더 구체적인 변수간의 구조적관계를 실증할 수 있게 되었다. 본 연구는 소매점과 자아의 이미지일치성을 두 가지 차원(실제 자아이미지일치성, 이상적 자아이미지일치성)으로 나누고 소매점자산의 구성요소인 소매점인지, 소매점연상, 지각된 소매점 품질, 소매점충성도에 어떠한 영향을 미치는가를 분석하고 자아이미지일치성을 토대로 평가된 소매점자산 요인들이 소매점의 재이용의도에 미치는 영향을 분석하여 소매점의 이미지의 관리와 투자에 대한 마케팅 측면의 중요성을 제시하고 있다. 연구모델에 대한 분석결과 소매점-실제 자아이미지일치성과 소매점-이상적 자아이미지일치성 모두 모두 소매점자산 요인들에 긍정적인 영향을 미쳤으며, 그 중 이상적 자아이미지일치성이 소매점자산 요인들에 미치는 상대적인 영향력이 더 크게 나타났다. 또한 소매점자산을 구성하는 각각의 요인들은 소비자의 소매점 재이용의도에 긍정적인 영향을 주는 것으로 나타났다. 이는 타겟 소비자들의 자아 이미지와 소매점의 상징적 이미지를 일치시키는 마케팅 노력을 통해 소비자들과 소매점 사이의 강력한 감정적 결속이 형성되어 해당 소매점의 자산을 높게 평가하고 지속적인 이용의도를 가져올 수 있음을 시사한다.

  • PDF

자기폭풍 기간 중 정지궤도 공간에서의 입자 유입률과 Dst 지수 사이의 상관관계 (THE RELATIONSHIP BETWEEN PARTICLE INJECTION RATE OBSERVED AT GEOSYNCHRONOUS ORBIT AND DST INDEX DURING GEOMAGNETIC STORMS)

  • 문가희;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2003
  • 자기폭풍(magnetic storm)과 서브스톰(substorm)의 인과관계를 규명하기 위하여 서브스톰 확장기 활동(substorm expansive activity)의 전형적인 지시자로 알려진 정지궤도 위성에서 관측된 양성자 플럭스(proton flux)의 무분산 입자유입률(dispersionless particle injection rate)과 Dst 지수와의 상관관계를 조사하였다. 본 연구에 이용된 자기폭풍은 1996년에서 2000년까지 5년 동안에 일어난 것으로 자기폭풍 기간 중 Dst의 최소값인 $Dst_{min}$의 크기에 따라 대규모($-200nT{$\leq$}Dst_{min}{$\leq$}-100nT$), 중규모($-100nT{\leq}Dst_{min}{\leq}-50nT$), 소규모 자기폭풍($-50nT{\leq}Dst_{min}{\leq}-30nT$)의 3단계로 구분하였다. 양성자 플럭스는 LANL의 정지궤도 위성에서 관측된 자료 중에서 주로 환전류(ring current)를 구성하는 입자의 에너지에 해당하는 50keV에서 670keV 범위의 6개 에너지 채널의 자료를 이용하였다. 그리고 입자유입은 자정 부근에서 주로 일어나므로 18:00~04:00MLT구간에서 관측된 자료만을 이용하였다. 한편 내부 자기권으로 유입되는 입자에너지를 추정하기 위하여 양성자 플럭스 비($f_{max}/f_{ave}$)를 조사하였다. 여기서, $f_{ave}$$f_{max}$는 각각 입자유입이 일어나기 전 후의 양성자 플럭스의 양을 나타낸다. 한편 자기폭풍 기간 동안에 1 ~ 2개의 인공위성 관측으로부터 내부 자기권으로 유입되는 총 에너지량을 추정하는 것이 불가능하다는 것이 알려졌다. 그러나 총 에너지 유입량은 적어도 플럭스 비와 유입횟수에 비례할 것이다. 따라서 내부 자기권으로 유입되는 에너지의 양을 간접적으로 추정하기 위해서 이들의 곱으로 정의되는 총 에너지 유입률 지수(total energy injection parameter, TEIP)를 제안하였다. 특히 서브스톰이 자기폭풍의 발달에 기여하는 정도를 알기 위하여 자기폭풍을 두 구간, 즉 주상(main phase)과 회복기(recovery phase)로 나누어 조사하였다. 양성자의 무분산 유입자료와 자기폭풍 기간 중 Dst$_{min}$ 값을 비교해 본 결과 다음과 같은 특성이 확인되었다. 첫째, 주상기간 중 입자들의 평균 유입횟수는 자기폭풍의 크기에 비례하여 증가하는 경향을 나타내며 유입휫수와 $Dst_{min}$ 사이에는 높은 상관관계(0.83)가 있었다. 둘째, 주상기간 중 자기폭풍의 크기가 클수록 플럭스 비 ($f_{max}/f_{ave}$는 대체로 증가하는 경향을 나타냈다. 그리고 75~113keV 에너지 채널에서의 $Dst_{min}$ 값과 플럭스 비의 상관계수는 0.74로서 가장 높았으며 나머지 에너지 채널 역시 비교적 높은 상관관계를 나타냈다. 셋째, 주상기간 중 총 에너지 유입률 지수와 $Dst_{min}$ 사이에 높은 상관관계가 확인되었다. 특히 환전류를 구성하는 주요 입자의 에너지 영역(75~l13keV)에서 가장 높은(0.80) 상관계수를 기록했다. 넷째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수록 현저했다. 주상에서 관측된 이러한 특성은 서브스톰 확장기 활동이 자기폭풍의 발달과 밀접한 관계가 있음을 시사한다.

유역특성에 의한 합성단위도의 유도에 관한 연구 (Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics)

  • 서승덕
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

한국 금융회사 마케팅 현황에 대한 탐색 연구 (An Exploratory Study on Marketing of Financial Services Companies in Korea)

  • 천성용
    • Asia Marketing Journal
    • /
    • 제12권2호
    • /
    • pp.111-133
    • /
    • 2010
  • 투자상품의 확산, 고령화 등으로 인한 금융니즈 다양화와 자본시장법 시행으로 인한 금융회사간 치열한 경쟁으로 인해 금융산업 내에서 마케팅의 역할이 더욱 중요해지고 있다. 그러나, 지금까지 다른 산업에 비해 금융산업의 마케팅 연구는 상대적으로 부족하였다. 본 연구는 향후 구체적인 금융마케팅 연구들이 진행되기에 앞서 국내 금융마케팅 연구들을 정리하고, 국내 금융회사 마케팅 담당자를 In-depth 인터뷰하여 실제 국내 금융 마케팅 현황을 조사하였다. 이를 통해 향후 금융마케팅 연구에 필요한 시사점을 얻고자 하였다. 분석 결과, 다른 산업의 마케팅과 다른 금융 마케팅만의 고유 특징에 대한 이론적인 연구가 부족하였고, 금융산업 내에서 은행, 증권, 보험, 카드 산업 간의 마케팅 특징 차이에 대한 연구도 부족하였음을 알 수 있었다. 소비자행동 관점에서 금융고객의 의사결정 과정에 관한 연구도 부족하였다. 또한, 우리나라의 금융회사의 마케팅 현황은 외형적으로 어느 정도 성숙 단계에 접어들었다고 볼 수 있으나, 실제 업무는 여전히 과거의 영업지원, 혹은 프로모션 및 CRM 데이터 분석 등 단기적인 부분에 치중되어 있었다. 그리고, 은행, 증권, 보험, 카드 회사 등 각 세부 금융산업별 마케팅 담당자들이 중요하게 생각하는 금융마케팅의 키워드와 문제 인식 정도도 서로 다름을 알 수 있었다. 본 연구는 이러한 분석 결과를 바탕으로 향후 금융마케팅 연구를 위한 시사점과 함께 6가지의 연구명제를 제안하였다.

  • PDF

재상업복무교역중적매매관계중상호신임대관계적효적영향(在商业服务交易中的买卖关系中相互信任对关系绩效的影响) (The Effect of Mutual Trust on Relational Performance in Supplier-Buyer Relationships for Business Services Transactions)

  • Noh, Jeon-Pyo
    • 마케팅과학연구
    • /
    • 제19권4호
    • /
    • pp.32-43
    • /
    • 2009
  • 信任在心理学, 经济学, 社会学中已被广泛研究, 其重要性不仅在市场营销中被强调, 在一般商业原则中也被强调. 供应商和买家之间的关系与过去不同, 过去的关系需要相当大的私人网络优势, 并可能涉及不道德的商业行为. 而在以工业营销成功的为核心的二十一世纪激烈的全球竞争中, 供应商和买家之间的关系是伙伴关系. 在相互合作的高级别信任的基础上, 通过交换的关系, 这会给买家和供应商带来长期的利益, 竞争力增强和交易成本的降低以及其他福利. 尽管现有的研究有信任的重要性, 但是在购买与供应关系中却忽视了信任的作用, 也没有系统地分析信任对关系的影响. 因此, 深入研究, 确定买家和商业服务供应商之间信任和关系绩效之间的联系是绝对需要的. 本研究中的商业服务, 包括那些支持制造业, 正作为下一代经济增长的引擎而吸引着人们的注意. 韩国政府已选择其作为制造业发展的战略领域. 由于商业服务开放市场的需求日趋激烈, 商业服务业的竞争力应该比以往得到更多的提倡. 本研究的目的是探索相互信任对买家和供应商之间的关系绩效的影响. 具体来说, 本研究在商业服务交易中提出了一个关于信任-关系绩效的理论模型, 并实证检验根据模型而提出的假设. 这项研究表明, 研究结果有战略意义. 本研究通过多种方法收集经验数据. 这些方法包括通过电话, 邮件和面试. 作为样本的公司是在韩国供应和购买商业服务的以知识为本的公司. 本研究收集的是二进的基础数据. 每个样本公司对包括购买公司及其相应的供应公司. 并跟踪调查每个公司对的相互信任. 本研究为商业服务的买卖双方提出了信任-关系绩效的模型. 该模型由信任和它的前因和后果. 买家的信任分为对供应公司的信任和对销售人员的信任. 根据Doney 和Cannon (1997)的研究我们在个人水平和组织水平上观察信任. 通常情况下, 买方是信任的受体, 但这项研究我们建议以供应商为观察受体. 因此, 它独特的关注了双边角度的知觉风险. 换言之, 供应商和买家一样, 是信任的主体, 因为交易通常是双边的. 从这个角度来看, 供应商对买家信任和买方对供货商的信赖一样重要. 供应商的信任从某种程度上受它信任的买方公司和买家的影响. 这种使用个人水平和组织水平的信任分类是根据Doney 和Cannon (1997)的研究. 信任影响供应商的选择, 这是一项双向放的工作. 供应商们积极参与供应商选择过程中, 和买家密切的一起工作. 此外, 该过程从某种程度上受每一方信任的合作伙伴的影响. 挑选过程包括一些步骤: 识别, 信息检索, 供应商选择和绩效评价. 作为这一进程的结果, 买家和供应商都进行绩效评估, 并就这些结果为基础, 采取有形或无形的纠正行动. 本研究中使用的关于信任的测量问项是根据Mayer, Davis 和 Schoorman (1995) 以及Mayer和Davis (1999)的研究发展起来的. 根据他们的建议, 有关信任的三个方面的研究包括有能力, 善和完整. 根据商业服务这个背景我们调整了原来的问题. 例如, 如 "他/她的专业能力" 已被改为 "当我们讨论我们的产品时销售人员表现出专业能力. "这项研究使用的测量问项不同于在以往的研究中使用的问项(Rotter 1967; Sullivan和Peterson 1982; Dwyer和Oh 1987. 本研究中有关信任的前因后果的测量问项是根据Doney和Cannon (1997)的研究为基础制定的. 根据商业服务这个背景我们调整了原来的问题. 特别是, 问题被设计为对买家和供应商以解决下列因素: 信誉 (诚信, 客户服务, 良好意愿), 市场地位 (公司规模, 市场份额, 在行业中的地位), 愿意定制(产品, 过程, 交付), 信息共享(专有信息, 个人信息), 愿意保持良好关系, 认为专业, 权威授权, 买方与卖方的相似性, 以及接触频率. 作为信任相应的变量, 我们对关系绩效进行了测试. 关系绩效分为有形的影响, 无形影响, 和副作用. 有形的影响包括财务业绩;无形的影响, 包括关系的改善, 网络开发, 以及内部员工的满意度;副作用包括既不是有形影响也不是无形影响的影响. 我们联系了350对公司, 105对公司答复了我们. 由于不完整我们删除了5对公司, 105对公司被用于数据分析. 用于数据分析的回应率为30%(三百五十零分之一百零五), 高于工业营销的平均回复比率. 至于回复的公司的特点, 大多数的公司运作的商业服务既为买方(85.4%)也为供应商(81.8%). 大部分买家是做消费品贸易(76%), 而供应商的大部分(70%)是做工业品贸易. 这可能意味着买家的过程是购入材料, 部件和组件从而生产消费品成品. 正如他们对他们与合作伙伴关系的长度的报告表示, 供应商比买家有更长的商业关系. 假设1测试买方-供应方特点对信任的影响. 销售人员的专业度(t=2.070, p<0.05)和权威授权(t=2.328, p<0.05)积极影响买方对供应方的信任. 另一方面, 权威授权(t=2.192, p<0.05)积极影响供应方对买方的信任. 对买方和供应方来说, 权威授权的程度对保持对彼此的信任有关键作用. 假设2测试买卖双方关系特点对信任的影响. 买家倾向于信任供应方, 因为供应方总是尽全力联系买方(t=2.212, p<0.05)这种倾向性在供应方方面也表现得很强(t=2.591, p<0.01). 另一方面, 供应商对买方的信任是由于供应商感知买家与自己的相似性(t=2.702, p<0.01). 这一发现证实了Crosby, Evans, 和Cowles(1990)的研究结果. 他们的结果表明供应方和买方通过商务或私务的定期会议来建立彼此的联系. 假设3测试信任对感知风险的影响. 结果表明无论对买方还是供应方, 信任越低, 感知风险就越大(买方: t =-6.621, p<0.01; 供应方: t=-2.437, p<0.05). 有趣的是, 这一趋势已被证明对买方更强. 这种较高水平的感知风险的一个可能的解释是在商业服务交易中买方通常比供应方感知到更大的风险. 为此, 有必要对供应商对买方实施减少风险的战略. 假设4测试信任对信息搜集. 根据结果, 对供应方和买方, 与预期相反, 信任取决于他们合作伙伴的名誉(买方t=2.929, p<0.01; 供应方t=2.711, p<0.05). 这一发现表明, 具有良好信誉的供应商往往是可信的. 以往的经验并没有显示出任何与买家或供应商信任的重要关系. 假设5测试信任对供应方/买方选择的影响. 与买方不同, 当供应方认为以往与买方的交易重要时, 供应方倾向信任买方(t=2.913 p<0.01). 但是, 本研究并没有现实资源忠诚和买方对供应方的信任之间有显著关系. 假设6测试的是信任对关系绩效的影响. 对买方和供应方, 当财务表现被报告提高时, 他们比较信任他们的合作伙伴(买方: t=2.301, p<0.05;供应方: t=3.692, p<0.01). 有趣的是, 这种趋势在供应方比较明显. 类似的, 当竞争力被报告提高时, 买卖双方比较信任他们的合作伙伴(买方t=3.563, p<0.01 ; 供应方t=3.042, p<0.01). 对供应方来说, 当对买方信任时效率和生产力会提高(t=2.673, p<0.01). 其他绩效指标与信任没有显著关系. 这项研究结果有一定的战略意义. 首先和最重要的是, 以信任为基础的交易对供应商和买家而言都是有益的. 根据研究证实, 通过努力建立和保持相互信任可以使财务表现提高. 同样, 可以通过同样的努力提高竞争力. 第二, 以信任为基础的交易能够减少购买情况中的感知风险. 这对供应商和买家都有启示. 人们普遍认为, 在一个高度参与的采购情况中买家感知到更高的风险. 为了减少风险, 以往的研究已建议供应商制定降低风险的策略. 而本研究的特点是从双边角度关注知觉风险. 换言之, 供应商也容易存在风险, 特别是当他们提供的服务, 需要非常先进的技术, 操作和维护. 因此, 购买者和供应商必须一起密切合作解决问题. 因此, 相互信任在问题解决过程中起着关键作用. 第三, 在这项研究中发现, 销售人员有更多的授权, 他或她越被信任. 这一发现从战术角度看是非常重要的. 建立信任是一个长期的任务, 然而, 当互信尚未开发, 供应商能够通过授权销售人员做出某些决定来克服遇到的问题, 这一结论也适用于供应商.

  • PDF