With the advent of SNS (Social Network Services), the product reviews by friends in SNS are intensively utilized for online marketing. However, there is a lack of empirical evidence on the actual marketing effect of SNS reviews, although we need to identify who can be the target of SNS marketing in terms of customer attributes, preferences, or experiences. In this study, we investigate the moderating role of customer attributes in identifying the effect of SNS reviews on customer purchasing decision. As the moderating variables, we adopt 'information search experience' and 'perception of information overload'. Research results evidence that, in order to understand the effect of SNS reviews in a comprehensive manner, we need to examine it in the context of various related factors such as 'information search experience' and 'perception of information overload'. The results show that the persuading effect of SNS reviews for product purchasing is stronger for the customers with the lower information search experiences as well as the lower perception on the information overload on the web. This result delivers managerial implications on who can be the target customers of SNS marketing.
Akram, Abubakker Usman;Khan, Hikmat Ullah;Iqbal, Saqib;Iqbal, Tassawar;Munir, Ehsan Ullah;Shafi, Dr. Muhammad
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권10호
/
pp.5120-5142
/
2018
Social media enables customers to share their views, opinions and experiences as product reviews. These product reviews facilitate customers in buying quality products. Due to the significance of online reviews, fake reviews, commonly known as spam reviews are generated to mislead the potential customers in decision-making. To cater this issue, review spam detection has become an active research area. Existing studies carried out for review spam detection have exploited feature engineering approach; however limited number of features are considered. This paper proposes a Feature-Centric Model for Review Spam Detection (FMRSD) to detect spam reviews. The proposed model examines a wide range of feature sets including ratings, sentiments, content, and users. The experimentation reveals that the proposed technique outperforms the baseline and provides better results.
This study investigated the consumer review information considered important by consumers when making a purchase decision to buy apparel products online. Data were collected through focus group interviews. Eleven females in their 20s and 30s, who have extensive experience in reading consumer reviews posted on online apparel stores, participated in the study. The consumer review information considered important by participants is the information related to seven product attributes (size, fabric, design, color, sewing, price, and country of origin), seven benefits (functional, financial, esthetic, emotional, social, utilitarian benefits, and product value compared to price) of the apparel product and four store attributes (return/refund, delivery, reputation/credibility, and customer service). The findings from the study can serve as an important tool in developing survey questions in order to evaluate the quality of consumer review information and help online retailers plan methods to improve the quality of reviews.
Purpose: This study aims to analyze the factors affecting customer satisfaction in the customer reviews of omni-channel, posted on Internet blogs, cafes, and YouTube using text mining analysis. Research, data, and Methodology: In this study, frequency analysis is performed and the LDA (Latent Dirichlet Allocation) is used to analyze social big data to respond to reviewers' reaction to the recently opened omni-channel shopping reviews by L Shopping Company. Additionally, based on the topic analysis, we conduct a sentiment analysis on purchase reviews and analyze the characteristics of each topic on the positive or negative sentiments of omni-channel app users. Results: As a result of a topic analysis, four main topics are derived: delivery and events, economic value, recommendations and convenience, and product quality and brand awareness. The emotional analysis reveals that the reviewers have many positive evaluations for price policy and product promotion, but negative evaluations for app use, delivery, and product quality. Conclusions: Retailers can establish customized marketing strategies by identifying the customer's major interests through text mining analysis. Additionally, the analysis of sentiment by subject becomes an important indicator for developing products and services that customers want by identifying areas that satisfy customers and areas that evoke negative reactions.
인터넷의 발달로, 소비자들은 이커머스에서 손쉽게 상품 정보를 확인한다. 이때 활용되는 상품 리뷰는 사용자 경험을 토대로 작성되어 구매의사결정의 효율성을 높일 뿐만 아니라 상품 개발에 도움을 주기도 한다. 하지만, 방대한 양의 상품 리뷰에서 관심있는 평가차원의 세부내용을 파악하는 데에는 많은 시간과 노력이 소비된다. 예를 들어, 노트북을 구매하려는 소비자들은 성능, 무게, 디자인과 같은 평가차원에 대해 각 차원별로 비교 상품의 평가를 확인하고자 한다. 따라서 본 논문에서는 상품 리뷰에서 다차원 상품평가 점수를 자동적으로 생성하는 방안을 제안하고자 한다. 본 연구에서 제시하는 방안은 크게 2단계로 구성된다. 사전준비 단계와 개별상품평가 단계로, 대분류 상품군 리뷰를 토대로 사전에 생성된 차원분류모델과 감성분석모델이 개별상품의 리뷰를 분석하게 된다. 차원분류모델은 워드임베딩과 연관분석을 결합함으로써 기존 연구에서 차원과 단어들의 관련성을 찾기 위한 워드임베딩 방식이 문장 내 단어의 위치만을 본다는 한계를 보완한다. 감성분석모델은 정확한 극성 판단을 위해 구(phrase) 단위로 긍부정이 태깅된 학습데이터를 구성하여 CNN 모델을 생성한다. 이를 통해, 개별상품평가 단계에서는 구 단위의 리뷰에 준비된 모델들을 적용하고 평가차원별로 종합함으로써 다차원 평가점수를 얻을 수 있다. 본 논문의 실험에서는 대분류 상품군 리뷰 약 260,000건으로 평가모델을 구성하고, S사와 L사의 노트북 리뷰 각 1,011건과 1,062건을 실험데이터로 활용한다. 차원분류모델은 구로 분해한 개별상품 리뷰를 6개 평가차원으로 분류했고, 기존 워드임베딩 방식보다 연관분석을 결합한 모델의 정확도가 13.7% 증가했음을 볼 수 있었다. 감성분석모델은 문장보다 구 단위로 학습한 모델이 평가차원을 면밀히 분석함으로써 29.4% 더 높은 정확도를 보임을 확인했다. 본 연구를 통해 판매자, 소비자 모두가 상품의 다차원적 비교가 가능하다는 점에서 구매 및 상품 개발에 효율적인 의사결정을 기대할 수 있다.
Customer reviews are one of the important sources for purchase decision makings in online stores. Online stores have tried to provide useful reviews in product pages to customers. To assess the usefulness of customer reviews before other users have voted enough on the reviews, diverse aspects of reviews were utilized in prevous studies. Style and semantic information were utilized in many studies. This study aims to test diverse alogrithms and datasets for identifying a proper classification method and threshold to classify useful reviews. In particular, most researches utilized ratio type helpfulness index as Amazon.com used. However, there is another type of usefulness index utilized in TripAdviser.com or Yelp.com, count type helpfulness index. There was no proper threshold to classify useful reviews yet for count type helpfulness index. This study used reivews and their usefulness votes on restaurnats from Yelp.com to devise diverse datasets and applied text mining approaches to classify useful reviews. Random Forest, SVM, and GLMNET showed the greater values of accuracy than other approaches.
최근 온라인 쇼핑 활동의 증가와 함께 소비자들은 온라인상에서의 제품에 대한 리뷰를 합리적인 구매 결정을 내리기 위한 중요한 정보로 활용하고 있다. 하지만 소비자들은 많은 양의 온라인 리뷰 중 그들의 구매 결정에 유익하게 활용될 리뷰를 선택하기가 쉽지 않다. 따라서 본 연구에서는 정교화 가능성 이론(elaboration likelihood model)을 바탕으로, 유익한 온라인 소비자 리뷰를 결정하는 요인이 무엇인지 알아보고, 구매하고자 하는 제품의 가격에 따라 유익한 리뷰를 결정짓는 요인이 어떻게 변화되는지를 분석하고자 한다. 본 분석을 위해 아마존 닷컴의 75,226개의 온라인 소비자 리뷰 데이터를 수집하고, 리뷰 메시지의 감정어 분석 (sentimental analysis)을 통해 메시지 내용에 대한 정량변수도 확보하였다. 다중회귀분석 결과, 리뷰 점수, 리뷰어에 대한 랭킹 정보를 포함하는 주변적 단서(peripheral cues)와 리뷰 메시지의 단어 수, 부정어 비율의 중심적 단서(central cues) 모두 리뷰의 유익성에 영향을 미치는 것으로 나타났다. 또한, 고가격 제품과 저가격 제품에서 유익한 리뷰를 결정하는 요인이 다르게 나타남을 확인하였다.
최근 온라인 상품검색기능을 제공하는 여러 사이트에서는 단순하게 특정상품을 검색하거나 신제품에 대한 소개 및 검색 기능뿐만 아니라 가격별 정렬, 제조사별 정렬, 출시일별 정렬 기능을 통해 상품을 판매하는 인터넷 쇼핑몰 사이트로의 연결기능과 함께 상품에 대한 주요 기능설명과 이용자들의 구매후기 등과 같은 다양한 서비스를 제공하고 있어, 온라인 쇼핑을 즐기는 소비자들에게 구매를 위한 준거점으로서 양질의 정보를 제공하고 있다. 본 연구는 온라인 상품 검색사이트에서 제공하는 이용후기의 역할을 살펴보고자 수행되었다. 이를 위해 온라인 상품검색사이트의 이용후기 특성으로 정보제공성과 유용성을 각각 설정하고, 온라인 상품검색사이트의 친숙성과 함께 사이트 신뢰, 만족, 충성도에 미치는 영향력 과정을 확인하기 위해 8개의 연구가설을 설정하였으며, 175명으로부터 자료를 수집, 이를 구조방정식 모형을 이용하여 검증하였다. 그 결과 친숙성과 이용후기의 정보제공성, 유용성 등이 사이트 신뢰, 만족을 경유하여 충성도에 유의적인 영향력을 미치고 있음을 확인하였다. 이를 통해 온라인 상품검색사이트 이용자의 충성도를 높이기 위해서는 사이트 친숙성을 높이는 전략, 제공되는 이용후기의 정보제공성을 높이고 유용성을 높이기 위한 운영전략의 마련이 필요하다 하겠다. 본 연구의 이러한 결과들이 향후 온라인 상품검색사이트를 운영하는 기업에게 많은 도움이 되었으면 한다.
사용자가 작성한 리뷰는 다양한 활용성을 갖는 가치 있는 데이타이다. 특히 온라인 쇼핑몰에서의 상품평은 사용자의 구매 결정에 직접적인 영향을 미치는 중요한 정보이다. 본 논문에서는 실제 쇼핑몰 사이트에 있는 상품평을 분석하여 각 상품의 특징과 이에 대한 사용자의 의견을 요약하고 상품의 순위를 산정하는 상품평 분석 시스템을 설계하고 구현하였다. 상품평을 분석하는 과정에서는 자연언어처리 기법과 의미 사전을 사용한다. 의미 사전에는 상품의 특징을 표현하는 어휘와 각 어휘들의 극성(Polarity) 정보들을 반자동화된 도구들을 활용하여 정의할 수 있도록 구현하였다. 이에 더하여 문맥에 따라 다른 의미를 갖는 어휘를 의미 사전에서 정의하고 활용하는 방법에 대해서도 논의하였다. 실험은 2개 상품 분류의 20개 상품, 1796개의 실제 상품평을 수집하여 상품의 순위를 측정하고 주요 요소를 분석하는 방식으로 진행하였다. 그 중 2개 상품에 대한 63개의 상품평에 대하여 분석의 정확률과 재현율을 측정하였으며, 평균 88.94%의 정확률, 47.92%의 재현율을 나타내었다.
Journal of Information Technology Applications and Management
/
제31권4호
/
pp.63-74
/
2024
This study analyzes Korean and Chinese consumer perceptions of Hanbang (traditional Korean herbal) cosmetics, specifically focusing on Sulwhasoo's Jaum two-piece set. Using topic modeling, 7,000 consumer reviews from Naver (Korea) and Baidu (China) were examined to uncover the key themes that influence consumer satisfaction and dissatisfaction. The results reveal significant similarities and differences between the two markets. In both countries, the product is frequently purchased as a gift, and price sensitivity is a major concern. However, Korean consumers prioritize delivery experiences and product functionality, while Chinese consumers focus more on product quality and effectiveness. These findings highlight the need for targeted strategies in each market. For success in Korea, competitive pricing and improved logistics are crucial, whereas in China, maintaining high product quality and capitalizing on the gifting culture are essential. Additionally, global expansion requires educating consumers on the benefits of Hanbang cosmetics, ensuring product consistency, and adapting to regional preferences. This research provides valuable insights for cosmetic companies aiming to enhance their market presence both locally and internationally.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.