• Title/Summary/Keyword: product manufacturing

Search Result 2,697, Processing Time 0.028 seconds

Development Concurrent Engineering : Product Design Evaluation

  • Cho, Moonsoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.373-376
    • /
    • 1996
  • The design development, and production of a product is one of the greatest challenges which flexible manufacturing systems face today. No matter how a company refines and controls the manufacturing process, if the product is not properly designed, it will not operate correctly or performed well. Therefore the focus on quality of design must be balanced. One such strategy certain to address the managerial and manufacturing of the future is concurrent engineering. Concurrent engineering calls for the consideration and inclusion of product design attributes satisfying all the design constraints such as customer requirements. Furthermore, concurrent engineering has been recently promoted in many industries as a response to competitive marketing pressures. Viewed as a systematic approach of creating high quality products and bringing them to market at lower cost and in significantly less time, it also attracts the attention of quality designers. In this paperm a methodology and model for optimizing the product design, especially selection of optimal design alternative, is developed. The focus of this paper is on product design as the most critical activity of concurrent engineering. The model is based on the customer requirements for quality. Customer requirements for a certain product can be grouped based on the various design attributes. The design attributes have the priorities. The number of design functions. Design attributes value are calculated, however these values are applied to the optimization method. Numerical example will be illustrated.

  • PDF

A study on the comparison of the predicting performance of quality of injection molded product according to the structure of artificial neural network (인공신경망 구조에 따른 사출 성형폼 품질의 예측성능 차이에 대한 비교 연구)

  • Yang, Dong-Cheol;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.48-56
    • /
    • 2021
  • The quality of products produced by injection molding process is greatly influenced by the process variables set on the injection molding machine during manufacturing. It is very difficult to predict the quality of injection molded product considering the stochastic nature of manufacturing process, because the process variables complexly affect the quality of the injection molded product. In the present study we predicted the quality of injection molded product using Artificial Neural Network (ANN) method specifically from Multiple Input Single Output (MISO) and Multiple Input Multiple Output (MIMO) perspectives. In order to train the ANN model a systematic plan was prepared based on a combination of orthogonal sampling and random sampling methods to represent various and robust patterns with small number of experiments. According to the plan the injection molding experiments were conducted to generate data that was separated into training, validation and test data groups to optimize the parameters of the ANN model and evaluate predicting performance of 4 structures (MISO1-2, MIMO1-2). Based on the predicting performance test, it was confirmed that as the number of output variables were decreased, the predicting performance was improved. The results indicated that it is effective to use single output model when we need to predict the quality of injection molded product with high accuracy.

Sequence Planning of Machining Features using STEP AP224 (STEP AP224를 이용한 특징 형상의 가공 순서 계획)

  • 강무진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.175-182
    • /
    • 2004
  • As a bridge between design and manufacturing, process planning is to generate a sequenced set of instructions to manufacture the specified part. Automatic interpretation of manufacturing information incorporated in the design documentation such as CAD file has been a knotty subject for manufacturing engineers since no current data exchange format for product data provides a perfect interface between heterogeneous systems. The recent neutral data exchange format STEp, standard for the exchange of product model data, includes not only geometry but also technical and managerial information. STEP AP(Application Protocol) 224 is specifically dedicated to the mechanical product definition for process planning using machining features. Given a design information in STEP AP 224 format, process planning can be made without human intervention. This paper describes a method to determine the sequence of machining features by using the machining features and the manufacturing information expressed in STEP AP224.

Expert System for Product Design and Process in Manufacturing Industry (제조업의 제품 설계 및 프로세스를 위한 전문가 시스템 개발)

  • Kang H.W.;Nam S.H.;Hong W.P.;Lee S.W.;Choi H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.114-117
    • /
    • 2005
  • An expert system is a system that employs human knowledge captured in a computer to solve problem that ordinarily require human expertise. Well-designed expert systems imitate the reasoning processes experts use to solve specific problem. Specially, expert systems are used to the engineer in manufacturing industry for the process control, production management and system management. In this paper, we propose the design process expert system for product design process in manufacturing industry and we present introduction and contents of design process expert system methodology and software for the air purifier design system. This system will be helpful to improvement of design process for the air purifier production.

  • PDF

Rapid Manufacturing of 3D Micro Products by UV Laser Ablation and Phase Change Filling (UV 레이저 어블레이션과 상변화 충진을 이용한 3차원 마이크로 부품의 쾌속 제작)

  • 신보성;김재구;장원석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.26-29
    • /
    • 2003
  • UV laser micromachining are generally used to create microstructures for micro product through a sequence of lithography-based photopatterning steps. However, the micromachining process is not suitable for the rapid realization of complex microscale 3D product because it depends on worker experiences, excessive cost and time to make many masks. In this paper, the more effective micro rapid manufacturing process, which is developed upon the base of laser micromachining. is proposed to fabricate micro products directly using UV laser ablation and phase change filling. The filling process is useful to hold the micro product during the next ablation step. The proposed micro rapid manufacturing process is also proven experimentally that enables to fabricate the 3D microscale products of UV sensitive polymer from 3D CAD data to functional micro parts.

  • PDF

Rapid Manufacturing of 3D Micro Products by UV Laser Ablation and Phase Change Filling (UV 레이저 어블레이션과 상변화 충진을 이용한 3차원 마이크로 부품의 쾌속 제작)

  • Shin B. S.;Kim J. G.;Chang W. S.;Whang K. H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.196-201
    • /
    • 2005
  • UV laser micromachining are generally used to create microstructures for micro product through a sequence of lithography-based photopatterning steps. However, the micromachining process is not suitable for the rapid realization of complex 3D micro product because it depends on worker experiences, excessive cost and time to make many masks. In this paper, the more effective micro rapid manufacturing process, which is developed upon the base of laser micromachining, is proposed to fabricate micro products directly using UV laser ablation and phase change filling. The filling process is useful to hold the micro product during the next ablation step. The proposed micro rapid manufacturing process is also proven experimentally that enables to fabricate the 3D micro products of UV sensitive polymer from 3D CAD data to functional micro parts.

A Study on the Inhibition of Propylene Chlorohydrins in HPMC Manufacturing Process(I) (HPMC 제조공정의 PCH 발생 억제에 관한 연구(I))

  • Jang, Hyun-Duk;You, Jae-Seong;Kim, Bong-Sun
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.247-252
    • /
    • 2011
  • The purpose of this study is to minimize the PCH(Propylene CHlorohydrins) as a by-product in HPMC(HydroxyPropyl MethylCellulose) manufacturing process. HPMC is made of cellulose which is natural high polymer. And HPMC is applicable to several industrial areas. Especially it can be used in food industry as an effective additive. PCH is the by-product which is generated in chemical reaction in HPMC manufacturing process. So it is essential to eliminate PCH for the improvement of product quality. Therefore we have studied to minimize the amount of PCH. It is expected that the application of HPMC could be enlarged as the result of this study.

A Study on the Selection of Strategic Industry in Gyeonggi Province (경기도 지역 전략산업 선정에 관한 시론적 연구)

  • Kim, Shin-Pyo
    • Journal of Industrial Convergence
    • /
    • v.12 no.2
    • /
    • pp.16-23
    • /
    • 2014
  • The aim of this study is to find the strategic industries that fulfills the on-site demands of the Gyeonggi province region related to the advancement and development of the local industries. As the results of the analysis, the 4 major strategic industries in the Gyeonggi province region were determined to be (1) electronic component, computer, visual, acoustic and telecommunication equipment manufacturing, (2) pulp, paper and paper product manufacturing, (3) medical substances and pharmaceutical product manufacturing, and (4) rubber and plastic product manufacturing. The industry of concordance between the 4 major strategic industry of the Gyeonggi province determined in this Study and the 13 future growth engine industry of Korea was the area of intelligent semiconductor. Accordingly, it was analyzed that there is a need to strategically cultivate the electrical and electronic telecommunication device industry, which is ranked the $1^{st}$among the strategic industries of Gyeonggi province by generating synergic effects with the policy of the government for nurturing of intelligent semiconductor industry.

  • PDF

Exploration of Optimal Product Innovation Strategy Using Decision Tree Analysis: A Data-mining Approach

  • Cho, Insu
    • STI Policy Review
    • /
    • v.8 no.2
    • /
    • pp.75-93
    • /
    • 2017
  • Recently, global competition in the manufacturing sector is driving firms in the manufacturing sector to conduct product innovation projects to maintain their competitive edge. The key points of product innovation projects are 1) what the purpose of the project is and 2) what expected results in the target market can be achieved by implementing the innovation. Therefore, this study focuses on the performance of innovation projects with a business viewpoint. In this respect, this study proposes the "achievement rate" of product innovation projects as a measurement of project performance. Then, this study finds the best strategies from various innovation activities to optimize the achievement rate of product innovation projects. There are three major innovation activities for the projects, including three types of R&D activities: Internal, joint and external R&D, and five types of non-R&D activities - acquisition of machines, equipment and software, purchasing external knowledge, job education and training, market research and design. This study applies decision tree modeling, a kind of data-mining methodology, to explore effective innovation activities. This study employs the data from the 'Korean Innovation Survey (KIS) 2014: Manufacturing Sector.' The KIS 2014 gathered information about innovation activities in the manufacturing sector over three years (2011-2013). This study gives some practical implication for managing the activities. First, innovation activities that increased the achievement rate of product diversification projects included a combination of market research, new product design, and job training. Second, our results show that a combination of internal R&D, job training and training, and market research increases the project achievement most for the replacement of outdated products. Third, new market creation or extension of market share indicates that launching replacement products and continuously upgrading products are most important.

Building CALS System using CIM in Manufacturing Company (기존 CIM을 활용한 제조업체에서의 CALS 구축 방안)

  • 이영해;최영하;전성진
    • The Journal of Society for e-Business Studies
    • /
    • v.1 no.2
    • /
    • pp.27-47
    • /
    • 1996
  • Manufacturing companies must have close relationships with cooperative companies and customers under dynamic market surroundings. Not only product life cycle, but also the allowed period between development of product and sale becomes shorter. In spite of these situations, most manufacturing companies have insufficient capabilities of the information technology and data exchange formats between companies are so different. Thus, there exists a limit on the efficient management of companies. These problems in manufacturing companies could be solved by CALS. Through CALS the company responses quickly to customer demand, transfers this information to manufacturing systems automatically, and distributes products at appropriate time In short, CALS is a strategy to distribute products satisfying with quality, cost and delivery. And up to now, most manufacturing companies have proceeded CIM systems. In this paper, an approach for the efficient building CALS system through extension of CIM in the manufacturing companies is proposed.

  • PDF