• Title/Summary/Keyword: process water

Search Result 9,553, Processing Time 0.037 seconds

Evaluation of Applicability and Economical Efficiency of Peroxone Process for Removal of Micropollutants in Drinking Water Treatment (정수처리에서 미량유해물질 제거를 위한 Peroxone 공정의 적용성 및 경제성 평가)

  • Son, Hee-Jong;Kim, Sang-Goo;Yeom, Hoon-Sik;Choi, Jin-Taek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.905-913
    • /
    • 2013
  • We compared the applicability and economical efficiency of peroxone process with those of ozone process in the existing water treatment plant on downstream of Nakdong River. After comparing the peroxone process for removing geosmin with the ozone process in lab scale test, peroxone process showed much higher removal efficiency than the ozone process at the same ozone dosage. Proper range of $H_2O_2/O_3$ ratio were 0.5~1.0 and the half-life of geosmin was about 5.5~6.8 min when the $H_2O_2/O_3$ ratio was set to 0.5 during 1~2 mg/L of ozone dosage. Peroxone process could reduce the ozone dosage about 50 to maximum 30% for the same geosmin removal efficiency compared to the ozone process in the pilot scale test. In case of 1,4-dioxane treatment, peroxone process could have 3~4 times higher efficiency than ozone process at the same ozone dosage. The results of estimating the economical efficiency of ozone and peroxone process for treating geosmin and 1,4-dioxane by using pilot scale test, in case of the removal target was set to 85% for these two materials, the cost of peroxane process could be reduced about 1.5 times compared to ozone process, and in the same production cost peroxone process could have 2~3 times higher removal efficiency than ozone process. The removal efficiency by peroxone process showed a large difference depending on the physicochemical characteristics of target materials and raw water, therefore detailed examination should be carried out before appling peroxone process.

Assessment and Optimization of Granular Activated Carbon (GAC) Process in Water Treatment Process (입상활성탄 공정의 진단 및 효율적 운영방안: D 정수장을 중심으로)

  • Kim, Seong Su;Lee, Kyung Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.781-790
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. Many of the problems occurring in the GAC process are associated with the operation goal and performance. The purpose of this study were to evaluate the design, operation, and performance of granular activated carbon process in D water treatment plant. The optimal operation conditions of GAC process such as backwashing condition, granular activated carbon replacement time were discussed. The design, operation and performance of GAC process is influenced by their raw water characteristics and placement within the treatment process sequence. A critical analysis of plants experience and the information from the literature identifies the effectiveness of GAC process and indicates where modifications in design and operation could lead to improved performance. It would be useful to evaluate and optimize the GAC process in other treatment plant.

Recycling of Wastepaper(XV) -Contamination of Process Water by System Closure- (고지재생연구(제15보) -제지 공정수 폐쇄화에 따른 오염 및 변화에 관한 연구-)

  • 조미선;윤혜정;류정용;신종호;송봉근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.32-40
    • /
    • 2001
  • It is desirable to reduce the amounts of fresh water and reuse the recycled water in papermaking process. In an attempt to improve the efficiency of recycling water refining treatment and to enhance the productivity of OCC recycling mill, up flow anaerobic sludge blanket(UASB) reactor was developed and introduced to Korea recently. In order to maximize the operating efficiency and minimize the adverse side effects it is imperative to estimate and evaluate the total effects of new system, UASB on the whole OCC recycling process. This study was carried out with a view to investigate the effects of the high temperature and alkalinity of process water on the quality ad productivity of testliner of OCC recycling mill which is equipped with UASB reactor and almost closed. Another object of this study was searching for the best available use of UASB treated process water. The results were as follows; Reuse of UASB treated water characterized with high temp and alkalinity was useful to improve the strength and drainage properties of recycled OCC owing to its good points of promoting OCC disintegration and reducing the calcium hardness of process water. However, it might not be avoidable to induce the increase of dissolved solids in process water in accordance with direct introducing of UASB treated water into the former stage of OCC stock preparation. So it would be advisable to adopt the UASB treated water in the stage of clean, screened OCC stock.

  • PDF

Utility Estimation of Pre-filtration on the Membrane Water Treatment Process (막여과 정수처리공정에서 전여과공정의 효용성 평가)

  • Park, Min Koo;Choi, Sang il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.445-448
    • /
    • 2008
  • The application of the membrane filtration process has been increased for the drinking water treatment system because of excellent quality of treated water compared with the sand filtration process. The selection of suitable pre-treatment processes and optimum flux according to the characteristics of raw water are important factors for the design of membrane processes. In this study, the most efficient pre-treatment processes for drinking water was selected by investigating the effects of pre-treatment processes on the operational stability of the membrane filtration process. Both lab-scale and pilot-scale experiments were conducted. In the lab-scale test, the effect of pre-treatment processes on the stability of the membrane filtration process was investigated indirectly by comparing the performance of membrane flux for raw water, pre-treated water, and membrane permeated water. In the pilot-scale test, the usefulness of prefiltration processes was assessed by comparing the performance of single membrane process and hybrid coagulation-membrane process. The results indicated that the coagulation process contributed to the stabilization of trans-membrane pressure (TMP) by removing contaminants on membranes, though the pre-filtration process had little effect on the TMP.

A Study of the Optimization Process Combination on the Ultrapure Water Treatment System (초순수 생산을 위한 최적공정 조합 평가)

  • Lee, Kyung Hyuk;Kim, Dong Gyu;Kwon, Boung Su;Jung, Kwan Sue
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.364-370
    • /
    • 2016
  • In this paper, the technique that determines efficient process combinations for the ultrapure water production was studied. The ultrapure water is one of the industrial water used in industrial activity and required in the advanced technology integrated industry. It is produced by combined process including filtration, ion exchange processes, the reverse osmosis (RO) process, degassing (DG) process and UV-oxidation (UVox) process. An ultrapure water production process consists of 15-20 different water treatment unit process. In this study, a pilot plant was built and operated to research the design parameters for the individual process. Through the pilot plant operation, 19 effective combinations were optimized among various processes. And then, 11 of them satisfied the final quality of the ultrapure water. The stability and economic feasibility were evaluated about the final 11 process combinations.

Application and evaluation for effluent water quality prediction using artificial intelligence model (방류수질 예측을 위한 AI 모델 적용 및 평가)

  • Mincheol Kim;Youngho Park;Kwangtae You;Jongrack Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

A Study on the Field Application of Intermittently Aerated Activated Sludge Process for Water Reuse System (간헐포기 활성슬러지 중수처리공정의 현장적용 연구)

  • Seo, In-Seok;Kim, Byung-Goon;Park, Seung-Kook;Kwon, Sun-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.513-521
    • /
    • 2000
  • Intermittently aerated activated sludge process was applied as a water reuse process of $70m^3/day$ for the upgrade of organic, nitrogen and phosphorus removal efficiency and clarifier performance. After application of the intermittently aeration, removal efficiency of BOD, SS, T-N and T-P were achieved 95%, 90%, 80% and 60%, respectively. Removal efficiencies in intermittently aerated process were considerably increased. comparing to those of continuously aerated activated sludge process. Also sludge rising problem in clarifier was improved. Average concentration of supplied reusing water were BOD 5 mg/L, turbidity 4 NTU and after chlorination, residual chlorine 0.4 mg/L, coliform 0 MPN/100mL. Intermittently aerated activated sludge process could be one of the best alternative process for the retrofit of conventional activated sludge process for the removal of nutrient in water reuse system.

  • PDF

Methods for the Reduction of Consumption and Contamination of Water in a Newsprint Mill by Using Simulation Model and WRDF (전산모사기법과 WRDF를 활용한 ONP 재활용 공정의 용수 및 오염부하 절감 방안에 관한 연구)

  • 이영애;류정용;성용주;김용환;송재광;송봉근;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.54-59
    • /
    • 2004
  • The methods for the minimization of fresh water consumption, waste water generation and water contamination have been greatly investigated and developed for last ten years. Recently, the rising cost of waste water treatment and the more strict environmental regulation lead to the higher demand of more efficient and systematic methods for process water management. The water reuse technology, which not only reduce the process water needs but also minimize waste water generation within the process, could be one of most efficient way for current demand. In this study, the practical way for reduction of water pollution and optimal reuse or recycle of process water in a newsprint mill was investigated by using a simulation model. The result of computer simulation showed that the COD level of approach system could be reduced by 50% after the stock concentration at the 2nd disc filter was increased upto 30%. The application of WRDF(Wrinkled Rotary Drum Filter) to the newsprint mill was carried out with pilot scale. The process water treated by WRDF had enough cleanliness to substitute the forming fabric shower water with the PDF water, which could result in the 30% reduction in fresh water consumption.

Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration (세라믹 막여과의 성능향상을 위한 응집 전처리의 적용)

  • Kang, Joon-Seok;Song, Jiyoung;Park, Seogyeong;Jeong, Ahyoung;Lee, Jeong-Jun;Seo, Inseok;Chae, Seonha;Kim, Seongsu;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.

The design parameter evaluation of ion exchange process for ultra pure water production (초순수 생산을 위한 이온교환공정 설계특성 평가)

  • Park, Se-Chool;Kwon, Boung-Su;Lee, Kyung-Hyuk;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, cation and anion exchange process for performance evaluation was conducted. A pilot plant for the ultrpure water production was installed with the capacity of $25m^3/d$. The various production rate and regeneration of ion exchange rate were tested to investigate the design parameters. The test resulst was applied to calculate the operating costs. Changing the flow rate of the ion exchange capacity of the reproduction reviewed the cation exchange process as opposed to the design value is 120 to 164% efficiency, whereas both anion exchange process is 82 to 124% efficiency, respectively. This results can be applied for more large scale plant if the scale up parameters are consdiered. The ion exchange capacity of the application in accordance with the design value characteristic upon application equipment is expected to be needed. In this study, the performance of cation and anion exchange resin process was evaluated with pilot plant($25m^3/d$). The ion exchange capacity along with space velocity and regeneration volume was evaluated. In results, the operation results was compared with design parameters.