• Title/Summary/Keyword: process variance

Search Result 920, Processing Time 0.027 seconds

Design Optimization Based on Designer's Preferences for the Mean and Variance (평균과 분산에 관한 설계자 선호에 기초한 설계 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In Taguchi's quadratic expected loss function used as robustness metric of performance characteristics, the mean and variance contributions are confounded. The consolidation of the mean and variance in the expected loss function may not always be the ideal approach. This paper presents a procedure for multi-attributes design optimization, where the mean and variance of performance characteristics are considered as separate attributes having designer's relative preferences for them and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) is introduced to attain robust optimal design. The effectiveness of proposed approach is shown with an example of a weld line minimization problem in the injection molding process.

  • PDF

Multivariate EWMA control charts for monitoring the variance-covariance matrix

  • Jeong, Jeong-Im;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.807-814
    • /
    • 2012
  • We know that the exponentially weighted moving average (EWMA) control charts are sensitive to detecting relatively small shifts. Multivariate EWMA control charts are considered for monitoring of variance-covariance matrix when the distribution of process variables is multivariate normal. The performances of the proposed EWMA control charts are evaluated in term of average run length (ARL). The performance is investigated in three types of shifts in the variance-covariance matrix, that is, the variances, covariances, and variances and covariances are changed respectively. Numerical results show that all multivariate EWMA control charts considered in this paper are effective in detecting several kinds of shifts in the variance-covariance matrix.

Robust Unit Root Tests with an Innovation Variance Break

  • Oh, Yu-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.177-182
    • /
    • 2012
  • A structural break in the level as well as in the innovation variance has often been exhibited in economic time series. In this paper we propose robust unit root tests based on a sign-type test statistic when a time series has a shift in its level and the corresponding volatility. The proposed tests are robust to a wide class of partially stationary processes with heavy-tailed errors, and have an exact binomial null distribution. Our tests are not affected by the size or location of the break. We set the structural break under the null and the alternative hypotheses to relieve a possible vagueness in interpreting test results in empirical work. The null hypothesis implies a unit root process with level shifts and the alternative connotes a stationary process with level shifts. The Monte Carlo simulation shows that our tests have stable size than the OLSE based tests.

A Study of Departure Process on the Open and Nested Population Constrained Tandem Queueing Network with Constant Service Times (사용자 제한이 적용되는 2계층 대기행렬 네트워크 구조의 이탈과정에 관한 분석)

  • Rhee, Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.113-121
    • /
    • 2009
  • In this paper, we consider the departure process from the open and nested tandem Queueing network with population constraint and constant service times. It is known that the Queueing network can be transformed into a simple Queueing network which can be easy to analyze. Using this simple Queueing network, upper and lower bounds on the interdeparture time are obtained. We prove that the variance of the interdeparture time is bounded within these two bounds. Validation against simulation data is shown that how it works the variance of the interdeparture time within two bounds. These bounds can be applied to obtain the better variance of the interdeparture time using a suitable method.

THE VALUATION OF VARIANCE SWAPS UNDER STOCHASTIC VOLATILITY, STOCHASTIC INTEREST RATE AND FULL CORRELATION STRUCTURE

  • Cao, Jiling;Roslan, Teh Raihana Nazirah;Zhang, Wenjun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1167-1186
    • /
    • 2020
  • This paper considers the case of pricing discretely-sampled variance swaps under the class of equity-interest rate hybridization. Our modeling framework consists of the equity which follows the dynamics of the Heston stochastic volatility model, and the stochastic interest rate is driven by the Cox-Ingersoll-Ross (CIR) process with full correlation structure imposed among the state variables. This full correlation structure possesses the limitation to have fully analytical pricing formula for hybrid models of variance swaps, due to the non-affinity property embedded in the model itself. We address this issue by obtaining an efficient semi-closed form pricing formula of variance swaps for an approximation of the hybrid model via the derivation of characteristic functions. Subsequently, we implement numerical experiments to evaluate the accuracy of our pricing formula. Our findings confirm that the impact of the correlation between the underlying and the interest rate is significant for pricing discretely-sampled variance swaps.

Fault Detection and Diagnosis for Induction Motors Using Variance, Cross-correlation and Wavelets (웨이블렛 계수의 분산과 상관도를 이용한 유도전동기의 고장 검출 및 진단)

  • Tuan, Do Van;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.726-735
    • /
    • 2009
  • In this paper, we propose an approach to signal model-based fault detection and diagnosis system for induction motors. The current fault detection techniques used in the industry are limit checking techniques, which are simple but cannot predict the types of faults and the initiation of the faults. The system consists of two consecutive processes: fault detection process and fault diagnosis process. In the fault detection process, the system extracts the significant features from sound signals using combination of variance, cross-correlation and wavelet. Consequently, the pattern classification technique is applied to the fault diagnosis process to recognize the system faults based on faulty symptoms. The sounds generated from different kinds of typical motor's faults such as motor unbalance, bearing misalignment and bearing loose are examined. We propose two approaches for fault detection and diagnosis system that are waveletand-variance-based and wavelet-and-crosscorrelation-based approaches. The results of our experiment show more than 95 and 78 percent accuracy for fault classification, respectively.

Noise reduction method using a variance map of the phase differences in digital holographic microscopy

  • Hyun-Woo Kim;Myungjin Cho;Min-Chul Lee
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.131-137
    • /
    • 2023
  • The phase reconstruction process in digital holographic microscopy involves a trade-off between the phase error and the high-spatial-frequency components. In this reconstruction process, if the narrow region of the sideband is windowed in the Fourier domain, the phase error from the DC component will be reduced, but the high-spatial-frequency components will be lost. However, if the wide region is windowed, the 3D profile will include the high-spatial-frequency components, but the phase error will increase. To solve this trade-off, we propose the high-variance pixel averaging method, which uses the variance map of the reconstructed depth profiles of the windowed sidebands of different sizes in the Fourier domain to classify the phase error and the high-spatial-frequency components. Our proposed method calculates the average of the high-variance pixels because they include the noise from the DC component. In addition, for the nonaveraged pixels, the reconstructed phase data created by the spatial frequency components of the widest window are used to include the high-spatialfrequency components. We explain the mathematical algorithm of our proposed method and compare it with conventional methods to verify its advantages.

A Procedure for Robust Evolutionary Operations

  • Kim, Yongyun B.;Byun, Jai-Hyun;Lim, Sang-Gyu
    • International Journal of Quality Innovation
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • Evolutionary operation (EVOP) is a continuous improvement system which explores a region of process operating conditions by deliberately creating some systematic changes to the process variable levels without jeopardizing the product. It is aimed at securing a satisfactory operating condition in full-scale manufacturing processes, which is generally different from that obtained in laboratory or pilot plant experiments. Information on how to improve the process is generated from a simple experimental design. Traditional EVOP procedures are established on the assumption that the variance of the response variable should be small and stable in the region of the process operation. However, it is often the case that process noises have an influence on the stability of the process. This process instability is due to many factors such as raw materials, ambient temperature, and equipment wear. Therefore, process variables should be optimized continuously not only to meet the target value but also to keep the variance of the response variables as low as possible. We propose a scheme to achieve robust process improvement. As a process performance measure, we adopted the mean square error (MSE) of the replicate response values on a specific operating condition, and used the Kruskal-Wallis test to identify significant differences between the process operating conditions.

  • PDF

On Asymptotic Properties of Bootstrap for Autoregressive Processes with Regularly Varying Tail Probabilities

  • Kang, Hee-Jeong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 1997
  • Let $X_{t}$ = .beta. $X_{{t-1}}$ + .epsilon.$_{t}$ be an autoregressive process where $\mid$.beta.$\mid$ < 1 and {.epsilon.$_{t}$} is independent and identically distriubted with regularly varying tail probabilities. This process is called the asymptotically stationary first-order autoregressive process (AR(1)) with infinite variance. In this paper, we obtain a host of weak convergences of some point processes based on bootstrapping of { $X_{t}$}. These kinds of results can be generalized under the infinite variance assumption to ensure the asymptotic validity of the bootstrap method for various functionals of { $X_{t}$} such as partial sums, sample covariance and sample correlation functions, etc.ions, etc.

  • PDF

Process Optimization for Co-based Self-flux Alloy Coating by Taguchi Method (다구찌 기법에 의한 코발트기 자융성합금 용사코팅의 최적공정 설계)

  • Lee, Jae-Hong;Kim, Yeong-Sik
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.108-114
    • /
    • 2013
  • This paper describes process optimization for thermal-sprayed Co-based self-flux alloy coating by Taguchi method. Co-based self-flux alloy coatings were fabricated according to $L_9(3^4)$ orthogonal array using flame spray process. Hardness test and wear test were performed, the results were analyzed by analysis of variance(ANOVA) considering a multi response signal to noise ratio(MRSN). From the results of ANOVA, the optimal combination of the flame spray parameters on Co-based self-flux alloy coating could be predicted. The calculated hardness and wear rate of the coatings by ANOVA were found to be close to that of confirmation experimental result.