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Abstract

Evolutionary operation (EVOP) is a continuous improvement system which explores a region of process operating
conditions by deliberately creating some systematic changes to the process variable levels without jeopardizing the product.
It is aimed at securing a satisfactory operating condition in full-scale manufacturing processes, which is generally different
from that obtained in laboratory or pilot plant experiments. Information on how to improve the process is generated from a
simple experimental design. Traditional EVOP procedures are established on the assumption that the variance of the
response variable should be small and stable in the region of the process operation. However, it is often the case that process
noises have an influence on the stability of the process. This process instability is due to many factors such as raw materials,
ambient temperature, and equipment wear. Therefore, process variables should be optimized continuously not only to meet
the target value but also to keep the variance of the response variables as low as possible. We propose a scheme to achieve
robust process improvement. As a process performance measure, we adopted the mean square error (MSE) of the replicate
response values on a specific operating condition, and used the Kruskal-Wallis test to identify significant differences
between the process operating conditions.

1. Introduction methodology can be used normally in
laboratory or pilot plant experiments [Myers

Response surface methodology is often used ., 4 Montgomery, 1995).
by engineers and scientists to determine the When the objective is to optimize a full-
values of the input variables for optimizing  scale production process, evolutionary
response variables. Response surface operation (EVOP) can be an alternative to
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response surface methodology.

EVOP is a step-by-step approach to
optimize on-line full-scale production
processes by making small changes to the
levels of process variables without
jeopardizing the quality of the items
produced. Although the changes may be very
small, EVOP is able to find statistically
significant differences in the response
variable by taking advantage of large-scale
production quantities. EVOP is applicable to
continuous or large batch processes such as
steel making, polymer production,
continuous casting, paper making, and
many others. EVOP is a part of routine plant
operation, carried out by manufacturing or
operating personnel with minimum
involvement of the engineering or
development staff.

Traditional EVOP procedures have been
established on the assumption that the
variance of the response variable should be
small and stable in the region of process
operation. However, the stability of the
process is often disrupted by noise factors.
Typical noise factors are raw materials,
ambient temperature, and equipment wear.
As time passes, the optimum conditions in a
production process can drift due to such
noise factors. Therefore, process variables
should be optimized continuously not only to
achieve the target mean value, but to
maintain the variance of the response
variable to as low a level as possible. In this

paper we propose an EVOP scheme to
achieve robust process improvement. As a
process performance measure, we adopt the
MSE (mean square error) of the replicate
response values for a specific operating
condition. This measure is adopted for dual
response surface optimization {Lin and Ty,
1995]. This approach is a general method for
examining both the mean and variance of
the response variable. To determine whether
there were significant differences among the
process operating conditions, the non-
parametric Kruskal-Wallis test was used.

2. Review of Traditional EVOP

Traditional EVOP systematically introduces
small changes in the levels of the process
variables under consideration, using 2* or 2°
factorial design points and a center point.

Figure 1 shows a 2? factorial design with a
center point as used for the traditional
EVOP. Center point represents the current
operating condition of the production process.
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Fig. 1 Design points for 2* factorial experiments
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When one observation has been taken at
each operating condition, one cycle is
completed. Then the main effects and
interactions of the process variables are
computed. Since one cycle is not sufficient to
detect any significant effect, more cycles are
taken until a significant effect on the
response emerges. At this point, one may
decide to move the operating conditions in
the direction of the improved response.
When an improved operating condition is
detected, one phase is said to have been
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completed.
An illustrative EVOP procedure is shown
in Figure 2.

3. Procedure for Achieving Process
Robustness

Since production processes are affected by
uncontrollable noise factors, there is a need
to find more stable operating conditions. In
this paper, we propose a scheme to achieve
on-line process robustness. There are two
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Fig. 2 Summary of EVOP procedure using 22 factorial designs
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major differences between our approach and
the traditional one. Firstly, we adopted the
mean square error (MSE) as the process
performance criterion to achieve process
robustness, which can be easily implemented.

Since the MSE is an aggregate measure of
mean and variance of the response values,
the MSE value can be used as a measure of
process robustness. Secondly, since MSE
values are not normally distributed, we used
the distribution-free Kruskal-Wallis test to
determine whether there was a significant
difference among operating conditions in
terms of the MSE values. Since we need to
have replicates on the response variable to
obtain an MSE value at each operating
condition, we defined a cycle to be complete
when a set of replicate MSE values were
obtained at each operating condition. Since
one cycle is not always sufficient to detect
significant differences among different
operating conditions, more cycles may be
needed to achieve the necessary level of
statistical significance. When an improved
operating condition is identified, one phase is
said to have been completed.

We focus on target-the-best case to
illustrate the basic idea and discuss other
cases later in this section. To demonstrate
the procedure adopted, we consider a
standard form of two process variables with
22 factorial.points and a center point as
shown in Figure 1. We will run experiments
on these five operating conditions. The run

order is randomly chosen. Let the target
value of the quality characteristic be t. After
running each cycle,

@® We calculate both the response mean
Y, and the response variance s’ for the i®
operating condition of the j** cycle.

® MSE; values are obtained from
MSE; = (¥;-t)* + s 4))

® The Kruskal-Wallis test is performed to
determine whether there is a significant
difference between the operating conditions.
If an improved condition is detected, one
phase is said to have been completed.

The process is then moved in the direction
of the improvement by setting the improved
condition as the center point for the next
phase. This procedure is iterated until a
phase is reached where the center point is
superior or equal to the other operating
conditions in terms of the MSE. When this
phase is reached, the exploring is concluded
and the process is accepted to be at an
optimum at the current center point
condition. When the optimum is unsatisfactory,
we can drop some of the current process
variable(s) and introduce new variable(s)
and start a new robust EVOP procedure.

During exploration, if two or more
conditions are found to be better than others,
decisions upon the direction of exploration




The Asian Journat on Quality / Vol.1, No. 1

93

can be made by taking into consideration the
economic aspects and the ease of operation,
after consultation with the people concerned.

The aforementioned approach can be easily
applied to the smaller-the-better (STB) and
the larger-the-better (LTB) cases. We can let
t = 0 in equation (1), for the STB case. For
the LTB case we can let z; = 1 /¥, as the
substituted response variable value, leading
to the STB case for the z response.

4. An Example

We illustrate the approach developed in
this paper with an example [Box and
Draper, 1987]. The experiment was
conducted to optimize a certain quality
characteristic of a printing process which is
related to the ability to apply coloring inks,
with respect to three process variables,
x,(speed), x,(pressure), and x,(distance).

The target value of the quality characteristic
is 500. The experiment is a 3 factorial
design with 3 replicates at each operating
condition. Response surfaces for the mean
and for the standard deviation are based on
the models fitted by ‘Vining and Myers
(1990)"

N

0, =327.6 + 177.0x, + 109.4x, + 131.5x, +
32.0x} - 22.4x,* - 29.1x? (2)

O, =349 + 11.5x, + 15.3x, + 29.2x, + 4.2x2 -
1.3x,2 - 16.8x,> + 7.7x,x, + 5.1x,x; +
14.1x, x, 3)

At each cycle, 20 data simulations are
created at each operating condition based on
models (2) and (3). From this simulation
data, the mean 3’} , the variance s and the
MSE; are calculated at each operating
condition. Figure 3 shows the operating
conditions using a 2° factorial design, 20
simulated data sets, mean, variance, and the
MSE value, at the 4" cycle in the 10" phase.

Figure 4 shows the tables for the Kruskal-
Wallis test in the 10" phase. Since a single
cycle was insufficient to find significant
differences between the operating conditions
in a certain phase, we simulated four cycles
at each operating condition and represented
the average MSE values by MSE at each
operating condition. In Figure 5 it can be
seen that the best condition in the first
phase was (x,, X,, X;) = (0.10, 0.10, 0.10),
which produces an average MSE value
17956.40. Next (0.10, 0.10, 0.10) is made the
center point for the second phase. This
procedure was then iterated until no further
improvement in MSE was obtained,
meaning that we have minimum MSE value
at the center point. As shown in Figure 5,
the optimal operating condition is (x,, x,,
X,)=(0.65, 0.35, -0.05) which was the center
point in the 10* phase and has a smaller
MSE value than any other peripheral
operating condition.
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Fig. 4 Kruskal ~ Wallis test in the 10** phase
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5. Concluding Remarks

To successfully implement the robust
EVOP procedure developed in this paper, we
suggest three considerations. Firstly, in a
certain phase, when sufficient cycles have
been run (say 4 to 8) and no improved
conditions emerge, try to replace one or two
process variables with new variables, and
then iterate the procedure. Secondly, when
the result of a cycle is significantly different
from the previous one at the same operating
condition, stop the exploration and
investigate whether there is time effect.
Finally, we should reemphasize that the
experimentation plan should be carefully
worked out to avoid jeopardizing the product
or the production schedule.
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