• Title/Summary/Keyword: process module

검색결과 2,071건 처리시간 2.087초

An Experiment Study on Manufacturing process of BIPV Module (BIPV모듈의 제조공정에 관한 실험적 연구)

  • An, Youngsub;Kim, Sungtae;Lee, Sungjin;Yoon, Jongho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.54-54
    • /
    • 2010
  • In this study, the correlation between temperature and the gel-content of the module were analyzed through experiments. Amorphous thin-film solar cell used in this experiment has a visible light transmission performance of 10%. In addition, ethylene vinyl acetate(EVA) film and the clear glass have been used for the modulation. The most important process is to laminate the module in the manufacturing process of BIPV(Building integrated photovoltaic) module. Setting parameters of laminator in the lamination process are temperature, pressure and time. Setting conditions significantly affect the durability, watertightness and airtightness of module. The most important factor in the setting parameters is temperature to satisfy the gel-contents. The bottom and top surface temperature of module are measured according to setting temperature of laminator. The results showed $145^{\circ}C$ of max temperature of the bottom surface and $128^{\circ}C$ of max temperature of top surface on the module at the temperature condition of $160^{\circ}C$. And at the another temperature condition of laminator with $150^{\circ}C$, the max temperature do bottom and top are $117^{\circ}C$ and $134^{\circ}C$ respectively. The temperature difference between bottom and top of the module occurred, that is because heat has been blocked by the clear glass and the bottom of the cells absorb the heat from the laminator. In this particular, the temperature difference between setting temperature of the laminator and the surface temperature of the module showed $15^{\circ}C$, because the heat of laminator plate is transferred to the surface of the module and heat is lost at this time. As a results, gel-content showed 94.8%, 88.7% and 81.7% respectively according to the setting temperature $155^{\circ}C$, $150^{\circ}C$ and $145^{\circ}C$ of the laminator. In conclusion, the surface temperature of module increases, the gel-contents is relatively increased. But if the laminator plate temperature is too high, the gel-content shows rather decline in performance. Furthermore, the temperature difference between setting temperature and the surface temperature of the module is affected by laminating machine itself and the temperature of module should be considered when setting the laminator.

  • PDF

The development of the procurement process system for e-Biz of the plant business (플랜트 산업의 e-Biz화를 위한 구매 Process System 개발)

  • Kim Hoi-Sub;Lee Joo-Pyo;Han Sang-hoon;Cho Se-hyoung;Park Chang-Hyun;Han Jae-Bum;Kim Sung-Ho;Kim Gyu-Tae
    • Journal of Internet Computing and Services
    • /
    • 제4권5호
    • /
    • pp.11-19
    • /
    • 2003
  • Since B2C(Business to Customer) from which e-commerce had originated was replaced by B2B, e-Business has shown fast growth so fa., Recently, e-Procurement by l:n concept is on the development as self-purchase system associated with their own ERP In many conglomerates in the Korean market. However, in order to vitalize e-Biz in the plant industry, we need to set up e-marketplaces where many sellers and buyers can meet each other at the same time, which has become the essential part for success as an expanded business model. In this paper, we expect that the foundation for e-transformation in the plant industry is set up by developing Purchase Process System and related modules as the prerequisite for e-Biz in the plant industry, and this report will provide an exemplary model for e-commerce. The Purchase Process System consists of 1) e-Purchasing Module that manages bidding and contract information based on quotation inquiry, 2) e-Expediting Module that manages information to guarantee the on-time delivery, 3) e-Certification Module that controls user authentification, 4) e-Basic Module that manages the bulletin boards, Q&A, etc.

  • PDF

Optimizing Lamination Process for High-Power Shingled Photovoltaic Module (고출력 슁글드 태양광 모듈의 라미네이션 공정조건 최적화)

  • Jeong, Jeongho;Jee, Hongsub;Kim, Junghoon;Choi, Wonyong;Jeong, Chaehwan;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제35권3호
    • /
    • pp.281-291
    • /
    • 2022
  • Global warming is accelerating due to the use of fossil fuels that have been used continuously for centuries. Now, humankind recognizes its seriousness, and is conducting research on searching for eco-friendly and sustainable energy. In the field of solar energy, which is a kind of eco-friendly and sustainable, many studies are being conducted to enhance the output performance of the module. In this study, the output improvement for the shingled module structure was studied. In order to improve the output performance of the module, the thickness of the encapsulant was increased, and the lamination process conditions have been improved accordingly. After that, the crosslinking rate was analyzed, and the suitability of the lamination process conditions was judged using this. In addition, a peeling test was conducted to analyze the correlation between the adhesion of the encapsulant and the output performance of the module. Finally, the optimization for the encapsulant material and the lamination process conditions for high-power shingled modules was established, and accordingly, the market share of high-power shingled modules in the solar module market can be expected to rise.

An Example of Development and Implementation of PBL Module in Fundamentals of Nursing (기본간호학 PBL 모듈(Module) 개발 및 적용의 일 예)

  • Kang Ki-Sun;Park Mee-Young;Lee Woo-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • 제8권2호
    • /
    • pp.244-258
    • /
    • 2001
  • Purpose: The purpose of this study was to develop and apply a conceptualized PBL module for Fundamentals of Nursing. Method: A case study method was used to describe and explore the Process of developing and implementing the PBL module. Result: This module included three PBL packages that were designed to deal with more complexed and indepth concepts as the packages proceeded. In order to achieved that, all the contents of Fundamentals of Nursing II and III were reorganized and integrated into three main concepts, hygiene, infection and dehydration. This module was implemented for first year college student nurses in the second semester of year 2000. The student self-evaluation results showed that they were generally satisfied with their achievement in learning, both final outcome and process. Also, the results indicated that they were more satisfied with the subject management, the lecturer and their peers after implementing PBL. Conclusion : This study demonstrated the potentiality for the application of a partially integrated PBL module within an existing subject. However, when student learning needs were beyond the extent of Fundamentals of Nursing, the lecturer had to set boundaries on learning content and this may have reduced the effects of learning. Therefore, the researchers emphasize the importance of developing an integrated PBL curriculum to maximize student learning outcomes.

  • PDF

Failure Mechanism of Bendable Embedded Electronic Module Under Various Environment Conditions (Bendable 임베디드 전자모듈의 손상 메커니즘)

  • Jo, Yun-Seong;Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.59-63
    • /
    • 2013
  • A bendable electronic module has been developed for a mobile application by using a low-cost roll-to-roll manufacturing process. In flexible embedded electronic module, a thin silicon chip was embedded in a polymer-based encapsulating adhesive between flexible copper clad polyimide layers. To confirm reliability and durability of prototype bendable module, the following tests were conducted: Moisture sensitivity level, thermal shock test, high temperature & high humidity storage test, and pressure cooker tester. Those experiments to induce failure of the module due to temperature variations and moisture are the experiment to verify the reliability. Failure criterion was 20% increase in bump resistance from the initial value. The mechanism of the increase of the bump resistance was analyzed by using non-destructive X-ray analysis and scanning acoustic microscopy. During the pressure cooker test (PCT), delamination occurred at the various interfaces of the bendable embedded modules. To investigate the failure mechanism, moisture diffusion analysis was conducted to the pressure cooker's test. The hygroscopic characteristics of the encapsulating polymeric materials were experimentally determined. Analysis results have shown moisture saturation process of flexible module under high temperature/high humidity and high atmosphere conditions. Based on these results, stress factor and failure mechanism/mode of bendable embedded electronic module were obtained.

고진동 운송계에서의 정밀 압력제어 장치의 설계 및 성능실험

  • 장원익;장기호;정기로;이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.237-242
    • /
    • 1993
  • In the cluster tool, it is necessary to precisely control the vacuum pressure for the wafer transportation between transport module and cassette or process with the range of 10 $^{-4}$ to 5*10 $^{-5}$ torr. So we have designed the pressure control system for the transport module of the cluster tool and have evaluated its performance. Digital PID is utilized with the weighted sum of both three previous errors and one current error. The feedback signal is put into the nitrgen mass flow controller using the transport module controller. This pressure control system can prevent the transport module from the particle generation and backstreaming of hazardous process gases of the process chamber.

  • PDF

Characterization of a Loess Module for Manufacturing Loess Red Ginseng

  • Kim, Il-Chool;Yang, Jung-Hwan;Hur, Sang-Sun
    • Journal of Ginseng Research
    • /
    • 제34권4호
    • /
    • pp.282-287
    • /
    • 2010
  • An optimized manufacturing process was developed for the production of high-quality loess red ginseng using a hybrid process in which loess (yellow earth) was incorporated into the conventional ginseng manufacturing process system. We designed conventional ginseng processing facilities and prepared the loess module by baking loess that contained 42% water at $860^{\circ}C$ for 8 h. The loess module showed excellent performance in deodorization and humidity control. The optimum steaming temperature at which maximum expansion of starch organisms occurred was 90 to $98^{\circ}C$.

TLP and Wire Bonding for Power Module (파워모듈의 TLP 접합 및 와이어 본딩)

  • Kang, Hyejun;Jung, Jaepil
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제26권4호
    • /
    • pp.7-13
    • /
    • 2019
  • Power module is getting attention from electronic industries such as solar cell, battery and electric vehicles. Transient liquid phase (TLP) boding, sintering with Ag and Cu powders and wire bonding are applied to power module packaging. Sintering is a popular process but it has some disadvantages such as high cost, complex procedures and long bonding time. Meanwhile, TLP bonding has lower bonding temperature, cost effectiveness and less porosity. However, it also needs to improve ductility of the intermetallic compounds (IMCs) at the joint. Wire boding is also an important interconnection process between semiconductor chip and metal lead for direct bonded copper (DBC). In this study, TLP bonding using Sn-based solders and wire bonding process for power electronics packaging are described.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • 제29권3호
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

A study on fault diagnosis of large chemical processes based on two-tier strategy (이단계 진단전략을 이용한 대형화학공정의 이상진단에 관한 연구)

  • 오영석;이병우;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1428-1431
    • /
    • 1997
  • This paper presents an efficient fault diagnosis methodology for lare chemical processes. The methodology is based on a two-tier strategy, When a falt occurs in a process, a top tier identifies the sector (process part or unit) that may contain the fault(s). Afterwards, a bottom tier or lower level evaluates the suspicious sector. The process modeling methodology based on functionality-behavior relations of process units, is proposed and utilized in the top-tier. This methodology models a target process as sequences of functions and variables and their relations. In the bottom tier, each sector has a dedicated diagostic module, which is tailored to the available information or models of the sector. For the sectors selected in the top-tier diagnosis, each diagnostic module is executed to identify the actual faults within the sector. Teh utility of the methodology is illustrated in the diagnosis of the CSTR with heat exchanger.

  • PDF