• Title/Summary/Keyword: process measurement

Search Result 5,167, Processing Time 0.086 seconds

Intercomparison of vacuum standards of Korea, United Kingdom, and Japan (진공표준의 국제비교 연구)

  • 홍승수;신용현;임종연;이상균;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.308-313
    • /
    • 1997
  • TDS (Thermal Lkso~ption Spectroscopy)system, for diagnosis of CRT manufacturing process, was designed and constructed. Outgassings and themla1 desorptions from the part or materials of CRT can be measured and analysed with this system at various temperatures. The system is consisted of 3 pirrts. vacuum chamher and pumping system with variable conductance, sample heating stages & their controller, and outgassing measurement devices, like as ion gauge or quadrupole mass spectrometer. The ultimate pressure of the system was under $1\times10^{-7}$ Pa. With the variable conductance system, the effective pumping speed of the chamber could he controlled from sub 11s to 100 11s. The effective pumping speed values were determined by dynamic flow measurement principle. The temperatures and ramp rate of sample were controlled by tungsten heater and PID controller up to $600^{\circ}C$ within t $\pm 1^{\circ}C$$difference to setting value. Ion gauge & QMS were calibrated for quantitative measurements. Some examples of TDS measurement data ;ind application on the CRT process analysis were shown.

  • PDF

Proposal and Evaluation of Hierachical Model of Internal Characteristics for Software Quality Measurement (소프트웨어 품질측정을 위한 내부특성 계층화 모델의 제안과 평가)

  • Yang, Hae-Sool;Rhee, Ryong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1508-1518
    • /
    • 1997
  • For the effective development of high qualitative software, it is important to measure the "design quality" through the "process of design" which is the upper phase of software development. And based on it, to improve the "design quality" is also important. But, up to now, most of the researches have been in connection with the quality characteristics, and quality sub-characteristics that can be measured and evaluated by users, but the researches about the internal characteristics and metrics that can be measured and evaluated by developer in the process of the development have not been through going enough. Accordingly, the purpose of this research is to point out the problems included in the internal characteristics of the solution of these problems. Omissions and duplications of the internal characteristics can be prevented by arranging than newly according to the model suggestion. Furthermore, it is confirmed that developers can get the efficiency of measurement by metrics, and also can get good improvement effect of metrics measurement accuracy through the concrete application test.

  • PDF

Indirect Cutting Force Measurement by Using Servodrive Current Sensing and it's Application to Monitoring and Control of Machining Process (이송모터 전류 감지를 통한 절삭력의 간접측정과 절삭공정 감시 및 제어에의 응용)

  • Kim, Tae-Yong;Choi, Deok-Ki;Chu, Chong-Nam;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-145
    • /
    • 1996
  • This paper presents an indirect cutting force measuring system, which uses the current signals from the AC servo drive units of the horizontal machining center, with its applications to the adaptive regulation of the cutting forces in various milling processes and to the on-line monitoring of tool breakage. A typical model for the feed-drive control system of a horizontal machining center is developed to analyze cutting force measurement from the drive motor. The pulsating milling forces can be measured indirectly within the bandwidth of the current feedback control loop of the feed-drive system. It is shown that the indirectly measured cutting force signals can be used in the adaptive controller for cutting force regulation. The whole scheme has been embedded in the commercial machining center and a series of cutting experiments on the face cutting processes are performed. The adaptive controller reveals reliable cutting force regulating capability against the various cutting conditions. It is also shown that the tool breakage in milling can be detected within one spindle revolution by adaptively filtering the current signals. The effect of the cutter run-out has been considered for the reliable on-line detection of tool breakage.

  • PDF

Efficient Data Management for Hull Condition Assessment

  • Jaramillo, David;Cabos, Christian;Renard, Philippe
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • Performing inspections for Hull Condition Monitoring and Assessment as stipulated in IACS unified requirements and IMO's Condition Assessment Scheme (CAS) IMO Resolution MEPC.94(46), 2001, Condition Assessment Scheme, IMO Resolution MEPC.111(50), 2003, Amendments to regulation 13G, addition of new regulation 13H involves a huge amount of measurement data to be collected, processed, analysed and maintained. Information to be recorded consists of thickness measurements and visual assessment of coating and cracks. The amount of data and increasing requirements with respect to condition assessment demand efficient computer support. Currently, due to the lack of standardization for this kind of data, the thickness measurements are recorded manually on ship drawings or tables. In this form, handling of the measurements is tedious and error-prone and assessment is difficult. Data reporting and analysis takes a long time, leading to some repairs being performed only at the next docking of the ship or making an additional docking necessary. The recently started ED funded project CAS addresses this topic and develops-as a first step-a data model for Hull Condition Monitoring and Assessment (HCMA) based on XML-technology. The model includes simple geometry representation to facilitate a graphically supported data collection as well as an easy visualisation of the measurement results. In order to ensure compatibility with the current way of working, the content of the data model is strictly confined to the requirements of the measurement process. Appropriate data interfaces to classification software will enable rapid assessment by the classification societies, thus improving the process in terms of time and cost savings. In particular, decision-making can be done while the ship is still in the dock for maintenance.

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

HK Curvature Descriptor-Based Surface Registration Method Between 3D Measurement Data and CT Data for Patient-to-CT Coordinate Matching of Image-Guided Surgery (영상 유도 수술의 환자 및 CT 데이터 좌표계 정렬을 위한 HK 곡률 기술자 기반 표면 정합 방법)

  • Kwon, Ki-Hoon;Lee, Seung-Hyun;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.597-602
    • /
    • 2016
  • In image guided surgery, a patient registration process is a critical process for the successful operation, which is required to use pre-operative images such as CT and MRI during operation. Though several patient registration methods have been studied, we concentrate on one method that utilizes 3D surface measurement data in this paper. First, a hand-held 3D surface measurement device measures the surface of the patient, and secondly this data is matched with CT or MRI data using optimization algorithms. However, generally used ICP algorithm is very slow without a proper initial location and also suffers from local minimum problem. Usually, this problem is solved by manually providing the proper initial location before performing ICP. But, it has a disadvantage that an experience user has to perform the method and also takes a long time. In this paper, we propose a method that can accurately find the proper initial location automatically. The proposed method finds the proper initial location for ICP by converting 3D data to 2D curvature images and performing image matching. Curvature features are robust to the rotation, translation, and even some deformation. Also, the proposed method is faster than traditional methods because it performs 2D image matching instead of 3D point cloud matching.

A NEW METHOD - REAL TIME MEASUREMENT OF THE INITIAL DYNAMIC VOLUMETRIC SHRINKAGE OF COMPOSITE RESINS DURING POLYMERIZATION (복합레진의 초기 동적 체적 중합수축의 실시간 측정 -새로운 측정장치의 개발에 대한 소고-)

  • 이인복
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.134-140
    • /
    • 2001
  • The polymerization shrinkage of composite resins is an important drawback although the composites have many advantages-more esthetic and conservative than metallic restoratives etc. The purposes of this research were to develop a new measurement method and to manufacture an instrument that can measure the initial dynamic volumetric shrinkage of composite resins during polymerization. The instrument was basically an electromagnetic balance that constructed with a force transducer using position sensitive photo detector(PSPD) and a negative feedback servo amplifier of proportional-derivative(PD) controller. The volumetric change of composites during polymerization was detected continuously as buoyancy change in distilled water by means of Archimedes's principle. It was converted to continuous electrical voltage signal in real time. The signal was properly conditioned and filtered and then it was stored in computer by a data acquisition(DAQ) board. By using this electronic instrument. the dynamic patterns of the polymerization shrinkage of eight commercial(Z-100, DenFil, AeliteFil, Z-250, P-60, SureFil, Synergy compact, and Tetric ceram) composite resins were measured and compared. The results were as follows. 1. From this project of developing instrument, the ability has been achieved that can acquire and process data of electrical signal transformed from various physical phenomenon by using temperature, displacement. photo. and force transducer. As a consequence, the instrumentation and measurement system used to analyze the physical characteristics of various dental materials in dental research field can be designed, manufactured and implemented in lab. 2. This instrument has some advantages. It was insensible to temperature change and could measure true dynamic volumetric shrinkage in real time without complicated process. It showed accuracy and high precision results with small standard deviation. 3. The polymerization shrinkage of composites was significantly different between brands and ranged from 2.47% to 3.89%, The order of polymerization shrinkage was as follows, in order of increasing shrinkage, SureFil, P60, Z250, Z100, Synergy compact. DenFil, Tetric ceram, and AeliteFil. 4. The polymerization shrinkage rate per unit time, dVol%/dt, showed that the instrument can provide an indirect research method for polymerization reaction kinetics.

  • PDF

Geostatistical Integration of Multi-Geophysical Data Measured at Different Ranges (측정 범위가 다른 다중 물리 탐사 자료의 지구통계학적 복합 해석)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Integrated interpretation of multi-geophysical data has been continuously used in terms that it has provided more confident information than the result from single-geophysical data. Especially, geostatistical integration has its own superiority that it is possible to deal with spatial characteristics as well as physical properties of survey data and the process of integration is clear. This paper further extends the previous work of geostatistical inversion for integrated interpretation. In this paper, we propose a new way of dealing with the case that the multi-geophysical data do not share the measurement range. According to the geostatistical kriging, the closer between the measurement points, the smaller kriging variance we get, and vice versa. We used this spatial properties as a weighting value to the process of geostatistical inversion for the geophysical data integration. An objective way to integrate different kinds of geophysical data measured at different ranges is provided with this algorithm.

Guideline on Acceptance Test and Commissioning of High-Precision External Radiation Therapy Equipment

  • Kim, Juhye;Shin, Dong Oh;Choi, Sang Hyoun;Min, Soonki;Kwon, Nahye;Jung, Unjung;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.123-136
    • /
    • 2018
  • The complex dose distribution and dose transfer characteristics of intensity-modulated radiotherapy increase the importance of precise beam data measurement and review in the acceptance inspection and preparation stages. In this study, we propose a process map for the introduction and installation of high-precision radiotherapy devices and present items and guidelines for risk management at the acceptance test procedure (ATP) and commissioning stages. Based on the ATP of the Varian and Elekta linear accelerators, the ATP items were checked step by step and compared with the quality assurance (QA) test items of the AAPM TG-142 described for the medical accelerator QA. Based on the commissioning procedure, dose quality control protocol, and mechanical quality control protocol presented at international conferences, step-by-step check items and commissioning guidelines were derived. The risk management items at each stage were (1) 21 ionization chamber performance test items and 9 electrometer, cable, and connector inspection items related to the dosimetry system; (2) 34 mechanical and dose-checking items during ATP, 22 multileaf collimator (MLC) items, and 36 imaging system items; and (3) 28 items in the measurement preparation stage and 32 items in the measurement stage after commissioning. Because the items presented in these guidelines are limited in terms of special treatment, items and practitioners can be modified to reflect the clinical needs of the institution. During the system installation, it is recommended that at least two clinically qualified medical physicists (CQMP) perform a double check in compliance with the two-person rule. We expect that this result will be useful as a radiation safety management tool that can prevent radiation accidents at each stage during the introduction of radiotherapy and the system installation process.

Development of Large-scale Tool Dynamometer for Measuring Three-axis Individual Force (3축 분력 측정이 가능한 대형 공구동력계 개발)

  • Kim, Joong-Seon;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.29-36
    • /
    • 2019
  • In modern society in which the fourth industrial revolution has come to the fore and rapid technology innovations are taking place, a phenomenon of making and selling small quantities of various products that consumers want instead of mass producing one item has emerged. As the market is moving toward the multi-item small-sized production system, there is a need for a system in which a machine independently judges and carries out machining and post-processing. In order for a machine to judge processing on its own, it is necessary to measure the force applied to a product. This study aimed to develop a large-scale dynamometer that enables three-axis measurement using octagonal ring load cells. As for the device's configuration, four octagonal ring load cells, which were previously researched, were used to enable three-axis measurement. It was reconfigured by modifying the attachment position of the octagonal ring load cells' strain gauge and the Wheatstone bridge of each axis, and a system was set up to allow the monitoring of data measured through the monitor. The configured device calculated a strain rate by an experiment, and this rate was compared with the theoretical strain rate to find a correction value. The correction value was entered into a formula, deriving a modified formula. The modified formula was entered into the device, which completed the large-scale dynamometer.