• Title/Summary/Keyword: process measurement

Search Result 5,167, Processing Time 0.041 seconds

The Development of 3D based On-Machine Measurement Operating System (3D 기반의 기상측정 운영시스템 개발)

  • 윤길상;최진화;조명우;김찬우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.145-152
    • /
    • 2004
  • This paper proposed efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software based 3D modeler for inspection on machine and it is interfaced tool machine with RS232C. The software is composed of two inspection modules that one is touch probe operating module and the other is laser displacement sensor operating module. The module for touch probe has need of inspection feature that extracted it from CAD data. Touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of laser displacement sensor is used inspection for profile and very small hole. An Advantage of this inspection method is to be able to execute on-line inspection during machining or after it. The efficiency of proposed system which can predict and definite the machining errors of each process is verified, so the developed system is applied to inspect the mold-base(cavity, core).

Geometric Error Analysis of Contact Type Three Points Supporting Method for Inner Diameter Measurement (접촉식 3점지지법에 의한 내경측정의 기하학적 오차 해석)

  • Kim, Min-Ho;Kim, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.69-76
    • /
    • 2008
  • Inner diameter of bearing race is automatically measured by complete inspection system after grinding process. Contact type three points supporting method is widely applied to automatic inner diameter measurement because of its excellent stability. However, the geometric consideration regarding three points supporting method is not sufficient. In this study, the error equation from geometric error analysis of three points supporting method is found. The effect of factors in the error equation is also investigated. The error equation is linear for difference of diameter in sample and master on range of tolerance. An error becomes more and more larger, when the distance of two supporting balls or the diameter of supporting ball are increased. In the result, some considerations are proposed for measurement of inner diameter by the three points supporting method.

Fast Measurement of Eyebox and Field of View (FOV) of Virtual and Augmented Reality Devices Using the Ray Trajectories Extending from Positions on Virtual Image

  • Hong, Hyungki
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.336-344
    • /
    • 2020
  • Exact optical characterization of virtual and augmented reality devices using conventional luminance measuring methods is a time-consuming process. A new measurement method is proposed to estimate in a relatively short time the boundary of ray trajectories emitting from a specific position on a virtual images. It is assumed that the virtual image can be modeled to be formed in front of one's eyes and seen through some optical aperture (field stop) that limits the field of view. Circular and rectangular shaped virtual images were investigated. From the estimated ray boundary, optical characteristics, such as the viewing direction and three dimensional range inside which a eye can observe the specified positions of the virtual image, were derived. The proposed method can provide useful data for avoiding the unnecessary measurements required for the previously reported method. Therefore, this method can be complementary to the previously reported method for reducing the whole measurement time of optical characteristics.

Development of Straightness Measurement System for Improving Manufacturing Process Precision (ODN제조 공정 정밀도 향상을 위한 진직도 측정시스템 개발)

  • Kim, Eung Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • In this paper, a high precision straightness measurement system has been developed at low cost using a visible laser and CMOS image sensor. CMOS image sensor detected optical image and the variation of straightness was calculated by image processing. We have observed that the error of the developed straightness measurement system was 0.9% when a distance of 3m between laser and image sensor. And it can be applied to 3D printer and any other areas.

THE STUDY OF MULI-LEVEL PERFORMANCE MEASUREMENT APPROACH FOR VALUE MANAGEMENT OF CIVIL INFRASTRUCTURE PROJECTS

  • Jong-Kwon Lim;Min-Jae Lee;Dong-Youl Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1294-1299
    • /
    • 2009
  • Best value in value engineering has relation to cost and performance. But a severe problem in VE study of a project is to reduce value due to loss of performance, caused by focusing on cost reduction. Also a lack of understanding performance concept, no trial VE workshop as well as cost saving-based policy have not satisfied customer needs. A efficient and practical methodology for accomplishing best value in construction projects is proposed. This study developed a more objective approach for performance measurement approach of mega projects and suggested a systematic process of performance quantitative analysis verifying value improvement. The proposed performance measurement method would be very useful for better communication and consensus between stakeholders and VE team especially through value engineering.

  • PDF

Development of Paper Blood Glucose Sensor with Minimal Hematocrit Effect (헤마토크릿 영향을 최소화한 종이 혈당센서 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.116-120
    • /
    • 2022
  • In this paper, we developed a paper blood glucose sensor that can minimize the effect of hematocrit. The paper blood glucose sensor has the advantage of being very simple in its production process as it is manufactured with only three printing processes on the top of the paper substrate. This glucose sensor consists of a total of six electrodes, including blood glucose measurement electrodes, hematocrit measurement electrodes, strip detection electrodes, and blood detection electrodes. A paper blood glucose sensor measures hematocrit with electrodes formed on the same sensor substrate when measuring blood glucose concentration, and compensates for the effect of hematocrit in real time to enable accurate blood glucose measurement.

Characterization of the Stress-optic Properties of Ceramics by Terahertz Time-domain Spectroscopy

  • Zhi Qiang Wang;Wen Jia Ren;Gui Ying Zhang;Zhi Yong Wang
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.225-229
    • /
    • 2024
  • This paper introduces a rapid measurement technique for the stress-optic coefficient, using terahertz time-domain spectroscopy. First we propose a design combining a four-point bending device with a scanning stage to streamline the loading process. Then we detail the measurement principle and outline the signal-processing algorithm. The experiments are carried out on Al2O3, a representative ceramic material. The experimental data reveal that the refractive index of Al2O3 exhibits a linear decrease with increasing stress. This work supplies an efficient method for stress measurement rooted in the stress-optic effect.

Worker Accountability in Computer Vision for Construction Productivity Measurement: A Systematic Review

  • Mik Wanul KHOSIIN;Jacob J. LIN;Chuin-Shan CHEN
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.775-782
    • /
    • 2024
  • This systematic review comprehensively analyzes the application of computer vision in construction productivity measurement and emphasizes the importance of worker accountability in construction sites. It identifies a significant gap in the connection level between input (resources) and output data (products or progress) of productivity monitoring, a factor not adequately addressed in prior research. The review highlights three fundamental groups: input, output, and connection groups. Object detection, tracking, pose, and activity recognition, as the input stage, are essential for identifying characteristics and worker movements. The output phase will mostly focus on progress monitoring, and understanding the interaction of workers with other entities will be discussed in the connection groups. This study offers four research future research directions for the worker accountability monitoring process, such as human-object interaction (HOI), generative AI, location-based management systems (LBMS), and robotic technologies. The successful accountability monitoring will secure the accuracy of productivity measurement and elevate the competitiveness of the construction industry.

INLINE NEAR INFRARED (NIR) SPECTROSCOPY FOR PROCESS CONTROL IN POLYMER EXTRUSION

  • Rohe, Thomas;Koelle, Sabine;Becker, Wolfgang;Eisenreich, Norbert;Eyerer, Peter
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1082-1082
    • /
    • 2001
  • Extrusion is one of the most important processes in polymer industry. The characterization of the polymer melt during processing will improve this process noticeably, One possibility of characterizing the actual processed polymer melt is the inline near infrared (NIR) spectroscopy, With this method several polymer properties can be observed during processing, e.g. composition, moisture ormechanical properties of the melt. For this purpose probes for transmission and reflection measurements have been developed, withstanding the high temperatures and pressures appearing during extrusion process (tested up to 300$^{\circ}C$ and 10 ㎫). For the transmission system an optical bypass was developed to eliminate disturbing spectral influences and hence increase the long term stability, which is the prerequisite for an industrial application. Measurements in transmission and reflection produced comparable results (or blending processes, where the prediction error was less than 1%. An optimum RMSEP of only 0.24% was found for preprocessed polymer blends measured in transmission on a laboratory extruder. A transflection measurement allowed for the first time the recording of relevant NIR-spectra in the screw area of an extruder. The application to a (PE+PP) blending process delivered promising results. This new measurement mode allows the observation of the ongoing processes within the screw area, which is of maximum Interest for reactive extrusion processes. Due to economic reasons the calibration transfer between different extrusion systems is also of high importance. Investigations on simulated and real-world spectra showed that a calibration transfer is possible. A new method alternatively to the well-known direct standardization procedures was developed, which is based on an automatic data pretreatment. This procedure delivers comparable results for the calibration transfer. Overall this paper presents concepts, components and algorithms for the inline near infrared (NIR) spectroscopy for polymer extrusion, which allows the use of it in a real industrial extrusion process.

  • PDF

Evaluation of Dynamic Delivery Quality Assurance Process for Internal Target Volume Based RapidArc

  • Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.181-189
    • /
    • 2017
  • The conventional delivery quality assurance (DQA) process for RapidArc (Varian Medical Systems, Palo Alto, USA), has the limitation that it measures and analyzes the dose in a phantom material and cannot analyze the dosimetric changes under the motional organ condition. In this study, a DQA method was designed to overcome the limitations of the conventional DQA process for internal target volume (ITV) based RapidArc. The dynamic DQA measurement device was designed with a moving phantom that can simulate variable target motions. The dose distribution in the real volume of the target and organ-at-risk (OAR)s were reconstructed using 3DVH with the ArcCHECK (SunNuclear, Melbourne, USA) measurement data under the dynamic condition. A total of 10 ITV-based RapidArc plans for liver-cancer patients were analyzed with the designed dynamic DQA process. The average pass rate of gamma evaluation was $81.55{\pm}9.48%$ when the DQA dose was measured in the respiratory moving condition of the patient. Appropriate method was applied to correct the effect of moving phantom structures in the dose calculation, and DVH data of the real volume of target and OARs were created with the recalculated dose by the 3DVH program. We confirmed the valid dose coverage of a real target volume in the ITV-based RapidArc. The variable difference of the DVH of the OARs showed that dose variation can occur differently according to the location, shape, size and motion range of the target. The DQA process devised in this study can effectively evaluate the DVH of the real volume of the target and OARs in a respiratory moving condition in addition to the simple verification of the accuracy of the treatment machine. This can be helpful to predict the prognosis of treatment by the accurate dose analysis in the real target and OARs.