• Title/Summary/Keyword: process measurement

Search Result 5,167, Processing Time 0.034 seconds

A Study on Adaptive Design of Experiment for Sequential Free-fall Experiments in a Shock Tunnel (충격파 풍동에서의 연속적 자유낙하 실험에 대한 적응적 실험 계획법 적용 연구)

  • Choi, Uihwan;Lee, Juseong;Song, Hakyoon;Sung, Taehyun;Park, Gisu;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.798-805
    • /
    • 2018
  • This study introduces an adaptive design of experiment (DoE) approach for the hypersonic shock-tunnel testing. A series of experiments are conducted to model the pitch moment coefficient of a cone as the function of the angle of attack and the pitch rate. An algorithm to construct the trajectory of the test model from the images obtained by the high-speed camera is developed to effectively analyze multiple time series experimental data. An adaptive DoE procedure to determine the experimental point based on the analysis results of the past experiments using the algorithm is proposed.

Technical Design of Tight Upper Sportswear based on 3D Scanning Technology and Stretch Property of Knitted Fabric (3차원 스캔 기술과 니트 소재의 신축성을 적용한 밀착형 스포츠웨어 상의 설계)

  • Kim, Tae-Gyou;Park, Soon-Jee;Park, Jung-Whan;Suh, Chu-Yeon;Choi, Sin-Ae
    • Fashion & Textile Research Journal
    • /
    • v.14 no.2
    • /
    • pp.277-285
    • /
    • 2012
  • This research studied how to develop tight upper sportswear from 3D scan data considering fabric stretch property. Subjects were five Korean men of average figure in their 20's. Scanning was done for ten postures via vitus smart/pro(Techmath LTD). Analyzing from 3D scan data, more than 70% of the upper body surface showed surface change rate under 20%. It was shoulder and under arm side part that showed most noticeable body surface change when moving. A parametric model with convex surface was generated and flattened onto the plane, resulting 2D pattern. The error rate occurring in the process of 3D to 2D conversion was 0.2% for outline and 0.13% for area, respectively. Thirteen kinds of stretchable fabrics in the market were collected for this study. Stretch property was in the range of 16.0~58.2% for wale direction; 23.1~78.4% for course. Based on wear trial test, four fabrics were chosen for making the 1st experimental garment and finally one fabric was chosen for the 2nd one, which was developed applying 4 kinds of crosswise reduction rate on 2D pattern: 0, 5, 10, and 15%. Through wear trial test and garment pressure measurement, experimental garment applied with 10% pattern reduction rate was evaluated as most comfortable and considerable.

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.

The Gender Observation Time Characteristics from Sight Fixation and the Leap of Pupil Index (시선의 고정과 도약 동공지표에 나타난 성별 주시시간 특성)

  • Lee, Jeong Ho;Kim, Jong-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.27 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • This research is to analyze the change of pupil size in gender through the eye-tracking experiment in large complex cultural space. It is meaningful that figured out the common characteristics and differences from gender observation characteristics. Through this research, the analyzed results of the observation time measurement that appeared from the fixation and saccades pupil indicator able to define as follows. Firstly, it was suggested that there were differences between each gender and participants through extract pupil size that can be the standard examples for the case from male and female and the process of extracting the relative pupil size change on the hourly range. From the specific time range, it was possible to indicate bending characteristics and reversal phenomena of Fixation and Saccades. Second, the result was found equally from both male and female group that the rapid increment of pupil size at initial time range immediately after the eye-tracking experiment has been initiated. This can be considered to actively accepting the stress given by the subject through the extended pupil after 10 seconds that compare to indicated very low pupil size between 0 to 10 seconds after starting the experiment. Third, meanwhile 0 to 10 seconds after initial observation are the time of sudden change in the pupil size, therefore these time range data cannot be regarded as observed in the appropriate condition. Thus, it able to define the highest times of emotional processing for male as 10 to 80 seconds, and for female as 10 to 70 seconds. There was no definition of the time range data for observation experiment from previous research, this data can be considered to stable time to observation through the pupil extension. Therefore, it is possible to set suitable time of observation experiment to be around 70 to 80 seconds exclude initial experiment time.

Study on Geomatric Level of Vocational High School Students Based on the Van Hiele Theory (Van- Hiele 이론에 의한 실업계 고등학생들의 기하 수준 고찰)

  • 정영철
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.175-184
    • /
    • 1998
  • The purpose of this study is that the Van Hiele theory can be applied to even vocational high school students. Through the comparison of Van Hiele level distribution of middle school students and high school students, it is that the aims of this study is to study the geomatric level of vocational high school students and to analize them, even so it can be to find for them the effective method of Geomatric education The subject of study is three kinds of vocational high school - commercial high school, industrial high school, fisheries high school - boys (240), girls (120) in Boryeong city, Chungchong Nam Do. We referred to Kim Mi-cheong′ thesis(1994) and Cheong Yean-sok′s thesis(1992) and compared my result with them. The method and the process of the study were based on the th method of CDASSG project. And we used Van Hiele Level Test as an instrument of measurement. We got the following conclusion as the result of the study 1. The 86% of the subject of the study was applied to the theory of Van Hiele - "Any students can reach level n just through level n-1." Even so the propriety of the theory proved to be from this study again. 2. The 88% of the subject of the study is applicable to below level 2. So if the proof is introduced to them in the class, it was very difficult for them to understand it. 3. The geometric level of vocational high school students is the same as the second grade of middle school. But we think to be desirable that a basic concept puts first in importance through recomposed teaching materials, because 68% of the students is seldom changed at level 1.

  • PDF

Reliability Evaluation System of Hot Plate for Photoresist Baking (Hot Plate 신뢰성 시험.평가시스템 개발)

  • Song, Jun-Yeop;Song, Chang-Gyu;No, Seung-Guk;Park, Hwa-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.180-186
    • /
    • 2002
  • Hot Plate is the major unit that it used to remove damp of wafer surface, to strength adhesion of photoresist (PR) and to bake coated PR in FAB process of semiconductor. The badness of Hot Plate (HP) has directly influence upon the performance of wafer, it is necessary to guarantee the performance of HP. In this study, a reliability evaluation system has been designed and developed, which is to measure and to estimate thermal uniformity and flatness of HP in range of temperature 0~$250^\circC$. This system has included the techniques which measures and analyzes thermal uniformity using infrared thermal vision, and which compensates measuring error of flatness using laser displacement sensor For measuring flatness, a measurement stage of 3 axes are developed which adapts the precision encoder. The allowable error of this system in respect of thermal uniformity is less $than\pm0.1^\circC$ and in respect of flatness is less $than\pm$1mm . It is expected that the developed system can measure from $\Phi200mm\;(wafer 8")\;to\;\Phi300mm$ (wafer 12") and also can be used in performance test of the Cool Plate and industrial heater, etc.

Comparative Analysis of the Weight Functions for the Reconstruction of a Gamma-ray CT based on the EM Technique (EM기반의 감마 CT 영상복원을 위한 가중치 함수 비교분석)

  • Lee, Na-Young;Jung, Sung-Hee;Kim, Jong-Bum;Kim, Jin-Sup;Kim, Jae-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.449-458
    • /
    • 2007
  • In this paper, we reconstructed the cross-sectional images of two phantoms simulating a petrochemical process from gamma radiation measurements. Three different weight functions for EM image reconstruction algorithm were built and compared with histograms representing the variance of the homogeneity of the phantom material, The radiation source, $^{137}Cs$, collimated by a lead with 5 mm diameter aperture and the measurement was made with a lead shielded 1inch NaI detector. As a result, the method taking into account the beam area in each pixel for a weight function showed the best resolution among the three methods.

Development of Calibration Target for Infrared Thermal Imaging Camera (적외선 열화상 카메라용 캘리브레이션 타겟 개발)

  • Kim, Su Un;Choi, Man Yong;Park, Jeong Hak;Shin, Kwang Yong;Lee, Eui Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.248-253
    • /
    • 2014
  • Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

The Effects of 'Affirmative Language' Experiment on Negative Affect, Self-Efficacy and Stress Coping Style in Freshmen Nursing Students ('긍정의 말' 실험학습이 새내기 간호 대학생의 부정적 정서, 자기효능감 및 스트레스 대처방식에 미치는 효과)

  • Cha, Jin Gyung;Moon, In Oh;Choi, Yeon Sook;Kim, Ji Hyun
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.15 no.2
    • /
    • pp.63-76
    • /
    • 2014
  • Objectives: The purpose of this study was to explore the effects of 'affirmative language' experiment upon freshmen nursing students' negative affect, self-efficacy and stress coping style. Methods: A nonequivalent control quasi-experiment was conducted on the subjects of 55 freshmen nursing students for 26(experimental group) and 29(control group). Data were analyzed using x2-test and t-test for participants' homogeneity test and conducted content analysis of process diary record and personal impressions. Results: As for negative affect, in case of the experimental group, depression(t=-2.384, p=.022) and anxiety(t=-2.243, p=.025) were significantly low with no difference for the control group. As for self-efficacy, both experimental and control groups showed significance and as for stress coping style, the control group used sub-categorized strategies better than the experimental group. There were 4 topics and subsequent 15 topics derived from the content analysis. 'Affirmative language' experiment showed alleviation of depression and anxiety helpful for study participants in self-reporting measurement, and helpful for stress self-management competence. Conclusion: It is necessary to connect the curriculum operation with interest of competence and practice of students stress self-management through the participating experiment experience.

  • PDF

Theoretical Performance Prediction Program of Pulse Detonation Engines (펄스 데토네이션 엔진 이론 성능 예측 프로그램)

  • Kim, Tae-Young;Kim, Ji-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.552-560
    • /
    • 2014
  • Pulse Detonation Engine(PDE) has been investigated as a next generation propulsion system with the advantages of the higher thermal efficiency by the compression effect and the wide operation ranges from zero speed at ground. In the present study, an efficient theoretical PDE performance prediction program was developed for realistic propellants based on the Endo's theory combining the Chapman-Jouguet detonation theory and expansion process of burnt gas in a constant area tube. The program was validated through the comparison with the experimental data obtained by a ballistic pendulum measurement. PDE performance analyses were carried out for various hydrocarbon fuels and oxidizer compositions by changing the mixture equivalence ratio and initial conditions. Theoretical PDE performance database could be established as a result of the analyses.