• 제목/요약/키워드: process hazard analysis

Search Result 332, Processing Time 0.032 seconds

Quantitative Hazard Analysis of Information Systems Using Probabilistic Risk Analysis Method

  • Lee, Young-Jai;Kim, Tae-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.16 no.3
    • /
    • pp.59-71
    • /
    • 2009
  • Hazard analysis identifies probability to hazard occurrence and its potential impact on business processes operated in organizations. This paper illustrates a quantitative approach of hazard analysis of information systems by measuring the degree of hazard to information systems using probabilistic risk analysis and activity based costing technique. Specifically the research model projects probability of occurrence by PRA and economic loss by ABC under each identified hazard. To verify the model, each computerized subsystem which is called a business process and hazards occurred on information systems are gathered through one private organization. The loss impact of a hazard occurrence is produced by multiplying probability by the economic loss.

  • PDF

A Process Hazard Analysis using HAZOP (HAZOP을 이용한 공정위험성 평가)

  • 이동형;배기웅;남소영;남경돈;이준열
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.193-200
    • /
    • 2000
  • Hazard and operability Review(HAZOP) is widely used as a process safety analysis which systematically identifies potential process deviations and settles the problems. In this paper, we carried out a process hazard analysis using HAZOP in K chemical plant. As a result, we showed that the plant could be operated more safely and be saved a lot of money by eliminating several existing hazardous factors through the change of processes and designs.

  • PDF

A Process Hazard Analysis using HAZOP in K Chemical Plant (HAZOP에 의한 K화학공장의 공정위험성 평가)

  • 이동형;배기웅;남소영;남경돈;이준열
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.1
    • /
    • pp.129-139
    • /
    • 2000
  • Hazard and operability Review(HAZOP) is widely used as a process safety analysis which systematically identifies potential process deviations and settles the problems. In this paper, we carried out a process hazard analysis using HAZOP in K chemical plant. As a result, we showed that the plant could be operated more saftly and be saved a lot of money by eliminating several existing hazardous factors through the change of processes and designs.

  • PDF

On the Development of Systems Safety Requirements Using Hazard Analysis Results (위험원 분석 결과를 반영한 시스템 안전 요구사항 생성에 관한 연구)

  • Kim, Jae-Chul;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.4
    • /
    • pp.9-16
    • /
    • 2011
  • Modern systems become more complex and the demand for systems safety goes up sharply. Thus, the proper handling of the safety requirements in the systems design is getting greatly increased attention these days. Hazard analysis has been one of the active areas of research in connection with systems safety. In this paper, we study a subject on how the hazard analysis results can be incorporated in the systems design. To this end we set up a goal on how to systematically generate safety requirements that should reflect hazard analysis results and be implemented in the systems design and development. To do so, we first review the process for systems design and suggest the associated Model. Then the process and results of hazard analysis are analyzed and Modeled particularly with emphasis on the safety data. The resulting data Model incorporating both the hazard analysis and system life cycle is used in the generation of safety requirements. Based on the developed data Model, the generation of the requirements, the construction of requirements DB, and the change management later on is demonstrated through the use of a computer-aided software tool.

Hazard Analysis Process Based on STPA Using SysML (SysML을 이용한 STPA 기반의 위험원 분석 프로세스)

  • Choi, Na-yeon;Lee, Byong-gul
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2019
  • Today's software systems are becoming larger and more complicated, and the risk of accidents and failures have also grown larger. Software failures and accidents in industrial fields such as automobiles, nuclear power plants, railroad industries, etc. may lead to severe damage of property and human life. The safety-related international standards, such as IEC 61508 have been established and applied to industries for decades. The safety life cycle specified in the standards emphasize the activities to develop safety requirements through hazard and risk analysis in the early stage of software development. In this paper, we propose 'Hazard Analysis Process based on STPA using SysML' in order to ensure the safety of software at the early stage of software development. The proposed hazard analysis can be effectively performed minimizing the loss of hazard by using the BDD and the IBD of SysML to define the control structure of a system. The proposed method also improves the specification of the safety constraints(requirement) by using SD. As a result, it is possible to identify the hazard without missing and identify the hazard scenarios in detail, and safety can be sufficiently ensured in the early stage of software development.

A Study on Microbiological Hazards in Sterilization Processing of Pteridium aquilinum and Platycodon grandiflorum (고사리와 도라지 제조공정 중 살균공정에 대한 미생물학적 위해 요소에 관한 연구)

  • Choi, Seon-Hyo;Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.646-653
    • /
    • 2016
  • This study performed a microbiological hazard analysis, which is required for the application of HACCP (Hazard Analysis Critical Control Point) system to Pteridium aquilinum and Platycodon grandiflorum. The manufacturing process was made by referring to the typical manufacturing process. Based on microbiological hazard analysis, grandiflorum root contained $6.2{\times}10^3CFU/g$ of bacteria, which has the largest amount of bacteria among the agricultural materials. On the other hand, microbiological hazard analysis of the raw materials and after the disinfecting process of confectionery showed a safe result. A microorganism test of the manufacturing environment and workers suggests that the microbiological hazard should be reduced through systematic cleaning, disinfection and accompanied by personal hygiene based on hygiene education for workers.

A Study on the Safety Plan for a Train Control System (열차제어시스템의 안전계획 수립에 관한 연구)

  • Kim Jong-Ki;Shin Duc-Ko;Lee Key-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.264-270
    • /
    • 2006
  • In this paper we present a safety plan to be applied to the development of the TCS(Train Control System). The safety plan that can be applied to the life cycle of a system, from the conceptual design to the dismantlement, shows the whole process of the paper work in detail through the establishment of a goal, analysis and assessment, the verification. In this paper we study about the making a plan, the preliminary hazard analysis, the hazard identification and analysis to guarantee the safety of the TCS. The process far the verification of the system safety is divided into several steps based on the target system and the approaching method. The guarantee of the system safety and the improvement of the system reliability is fellowed by the recommendation of the international standards.

Development of a Railway Accident Scenario Analysis Technique using a Preliminary Hazard Analysis(PHA) and a Quality Function Deployment(QFD) (예비위험분석기술(PHA)과 품질기능전개(QFD) 기법을 이용한 철도사고 시나리오 분석기술 개발)

  • Park Chan-Woo;Kwak Sang-Log;Wang Jong-Bae;Hong Seong-Ho;Park Joo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.151-156
    • /
    • 2005
  • The objective of this study is to devise an accident scenario analysis method adept at creating accident scenarios at the Preliminary Hazard Analysis(PHA) step of a hazard analysis for railway system. This approach was inspired by the Quality Function Deployment(QFD) method, which is conventionally used in quality management and was used at the systematic accident scenario analysis(SASA) for the design of safer products. In this study, the QFD provides a formal and systematic schema to devise accident scenarios while maintaining objective. The accident scenario analysis method first identifies the hazard factors that cause railway accidents and explains the situation characteristics surrounding the accident. This method includes a feasibility test, a clustering process and a pattering process for a clearer understanding of the accident situation. Since this method enables an accident scenario analysis method to be performed systematically as well as objectively, this method is useful in building better accident prevention strategies. Therefore, this study can serve to reduce railway accident and be an effective tool for a hazard analysis.

  • PDF

Highway flood hazard mapping in Thailand using the Multi Criteria Analysis based the Analytic Hierarchy Process

  • Budhakooncharoen, Saisunee;Mahadhamrongchai, Wichien;Sukolratana, Jiraroth
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.236-236
    • /
    • 2015
  • Flood is one of the major natural disasters affecting millions of people. Thailand also, frequently faces with this type of disaster. Especially, 2011 mega flood in Central Thailand, inundated highway severely attributed to the failure of national economic and risk to life. Lesson learned from such an extreme event caused flood monitoring and warning becomes one of the sound mitigations. The highway flood hazard mapping accomplished in this research is one of the strategies. This is due to highway flood is the potential risk to life and limb, and potential damage to property. Monitoring and warning therefore help reducing live and property losses. In this study, degree of highway flood hazard was assessed by weighting factors for each cause of the highway flood using Multi Criteria Analysis (MCA) based Analytic Hierarchy Process (AHP). These weighting factors are the essential information to classify the degree of highway flood hazard to enable pinpoint on flood monitoring and flood warning in hazard areas. The highway flood causes were then investigated. It was found that three major factors influence to the highway flood are namely the highway characteristics, the hydrological characteristics and the land topography characteristics. The weight of importance for each cause of the highway flood in the whole country was assessed by weighting 3 major factors influence to the highway flood. According to the result of MCA analysis, the highway, the hydrological and the land topography characteristics were respectively weighted as 35, 35 and 30 percent influence to the cause of highway flood. These weighting factors were further utilized to classify the degree of highway flood hazard. The Weight Linear Combination (WLC) method was used to compute the total score of all highways according to each factor. This score was later used to categorize highway flood as high, moderate and low degree of hazard levels. Highway flood hazard map accomplished in this research study is applicable to serve as the handy tool for highway flood warning. However, to complete the whole warning process, flood water level monitoring system for example the camera gauge should be installed in the hazard highway. This is expected to serve as a simple flood monitor as part of the warning system during such extreme or critical event.

  • PDF

Preliminary Hazard Analysis: Assessment of New Component Interface Module Design for APR1400

  • Olaide, Adebena Oluwasegun;Jung, Jae Cheon;Choi, Moon Jae;Ngbede, Utah Michael
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • The use of Field-Programmable Gate Arrays (FPGAs) in the development of safety-related Human-Machine Interface (HMI) systems has gained much momentum in nuclear applications. Recently, one of the application areas for the Advanced Power Reactor 1400 (APR1400) is in the development of the advanced Component Interface Module (CIM) of the Engineered Safety Features Actuation System (ESFAS). Using systems engineering approach, we have developed a new FPGA-based advanced CIM software. The first step of our software development process involves the Preliminary Hazard Analysis (PHA) based on the previous CIM design. In this paper, we describe the qualitative approach used in performing the preliminary hazard analysis. The paper presents the methodology for applying a modified Hazard and Operability (HAZOP) procedure for the conduct of PHA which resulted in a qualitative risk-ranking scheme that informed the decisions for the safety criteria in the requirements specification phase. The qualitative approach provided the justification for design changes during the advanced CIM software development process.