• Title/Summary/Keyword: process fault

Search Result 939, Processing Time 0.031 seconds

Prediction of Influent Flow Rate and Influent Components using Artificial Neural Network (ANN) (인공 신경망(ANN)에 의한 하수처리장의 유입 유량 및 유입 성분 농도의 예측)

  • Moon, Taesup;Choi, Jaehoon;Kim, Sunghui;Cha, Jaehwan;Yoom, Hoonsik;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • This work was performed to develop a model possible to predict the influent flow and influent components, which are one of main disturbances causing process problems at the operation of municipal wastewater treatment plant. In this study, artificial neural network (ANN) was used in order to develop a model that was able to predict the influent flow, $COD_{Mn}$, SS, TN 1 day-ahead, 2day-ahead and 3 day ahead. Multi-layer feed-forward back-propagation network was chosen as neural network type, and tanh-sigmoid function was used as activation function to transport signal at the neural network. And Levenberg-Marquart (LM) algorithm was used as learning algorithm to train neural network. Among 420 data sets except missing data, which were collected between 2005 and 2006 at field plant, 210 data sets were used for training, and other 210 data sets were used for validation. As result of it, ANN model for predicting the influent flow and components 1-3day ahead could be developed successfully. It is expected that this developed model can be practically used as follows: Detecting the fault related to effluent concentration that can be happened in the future by combining with other models to predict process performance in advance, and minimization of the process fault through the establishment of various control strategies based on the detection result.

A Study on Reliability Analysis and Development of Fault Tolerant Digital Governor (내고장성 디지털 조속기의 신뢰도 평가 및 개발에 관한 연구)

  • 신명철;전일영;안병원;이성근;김윤식;진강규
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.467-474
    • /
    • 1999
  • In this paper, Fault tolerant digital governor, using duplex I/O module and triplex CPU module and also 2 out of 3 voting algorithm and adding self diagnostic ability, is designed to realize ceaseless controlling and to improve the reliability of control system. The processor module of the system(SIDG-3000) is developed based on MC68EC040 32 Bit of Motorola, which guaranteed high quality of the module ,and SRAM for data also SRAM for command are separated. The process module also includes inter process communication function and power back up function (SRAM for back-up). System reliability is estimated by using the model of Markov process. The reliability of triplex system in mission time can be improved about 1.8 times in reliability 86%. 2.8 times in 95 %, 6 times in 99 % compared with a single control system. Designed digital governor system is applied after modelling of the steam turbine generator system of Buk-Cheju Thermal Power Plant. Simulation is carried out to prove the effectiveness of the designed digital governor system

  • PDF

Development of Monitoring System for the LNG plant fractionation process based on Multi-mode Principal Component Analysis (다중모드 주성분분석에 기반한 천연가스 액화플랜트의 성분 분리공정 감시 시스템 개발)

  • Pyun, Hahyung;Lee, Chul-Jin;Lee, Won Bo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.19-27
    • /
    • 2019
  • The consumption of liquefied natural gas (LNG) has increased annually due to the strengthening of international environmental regulations. In order to produce stable and efficient LNG, it is essential to divide the global (overall) operating condition and construct a quick and accurate monitoring system for each operation condition. In this study, multi-mode monitoring system is proposed to the LNG plant fractionation process. First, global normal operation data is divided to local (subdivide) normal operation data using global principal component analysis (PCA) and k-means clustering method. And then, the data to be analyzed were matched with the local normal mode. Finally, it is determined the state of process abnormality through the local PCA. The proposed method is applied to 45 fault case and it proved to be more than 5~10% efficient compared to the global PCA and univariate monitoring.

Distributional Characteristics of Fault Segments in Cretaceous and Tertiary Rocks from Southeastern Gyeongsang Basin (경상분지 남동부 일대의 백악기 및 제3기 암류에서 발달하는 단층분절의 분포특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.109-120
    • /
    • 2018
  • The distributional characteristics of fault segments in Cretaceous and Tertiary rocks from southeastern Gyeongsang Basin were derived. The 267 sets of fault segments showing linear type were extracted from the curved fault lines delineated on the regional geological map. First, the directional angle(${\theta}$)-length(L) chart for the whole fault segments was made. From the related chart, the general d istribution pattern of fault segments was derived. The distribution curve in the chart was divided into four sections according to its overall shape. NNE, NNW and WNW directions, corresponding to the peaks of the above sections, indicate those of the Yangsan, Ulsan and Gaeum fault systems. The fault segment population show near symmetrical distribution with respect to $N19^{\circ}E$ direction corresponding to the maximum peak. Second, the directional angle-frequency(N), mean length(Lm), total length(Lt) and density(${\rho}$) chart was made. From the related chart, whole domain of the above chart was divided into 19 domains in terms of the phases of the distribution curve. The directions corresponding to the peaks of the above domains suggest the directions of representative stresses acted on rock body. Third, the length-cumulative frequency graphs for the 18 sub-populations were made. From the related chart, the value of exponent(${\lambda}$) increase in the clockwise direction($N10{\sim}20^{\circ}E{\rightarrow}N50{\sim}60^{\circ}E$) and counterclockwise direction ($N10{\sim}20^{\circ}W{\rightarrow}N50{\sim}60^{\circ}W$). On the other hand, the width of distribution of lengths and mean length decrease. The chart for the above sub-populations having mutually different evolution characteristics, reveals a cross section of evolutionary process. Fourth, the general distribution chart for the 18 graphs was made. From the related chart, the above graphs were classified into five groups(A~E) according to the distribution area. The lengths of fault segments increase in order of group E ($N80{\sim}90^{\circ}E{\cdot}N70{\sim}80^{\circ}E{\cdot}N80{\sim}90^{\circ}W{\cdot}N50{\sim}60^{\circ}W{\cdot}N30{\sim}40^{\circ}W{\cdot}N40{\sim}50^{\circ}W$) < D ($N70{\sim}80^{\circ}W{\cdot}N60{\sim}70^{\circ}W{\cdot}N60{\sim}70^{\circ}E{\cdot}N50{\sim}60^{\circ}E{\cdot}N40{\sim}50^{\circ}E{\cdot}N0{\sim}10^{\circ}W$) < C ($N20{\sim}30^{\circ}W{\cdot}N10{\sim}20^{\circ}W$) < B ($N0{\sim}10^{\circ}E{\cdot}N30{\sim}40^{\circ}E$) < A ($N20{\sim}30^{\circ}E{\cdot}N10{\sim}20^{\circ}E$). Especially the forms of graph gradually transition from a uniform distribution to an exponential one. Lastly, the values of the six parameters for fault-segment length were divided into five groups. Among the six parameters, mean length and length of the longest fault segment decrease in the order of group III ($N10^{\circ}W{\sim}N20^{\circ}E$) > IV ($N20{\sim}60^{\circ}E$) > II ($N10{\sim}60^{\circ}W$) > I ($N60{\sim}90^{\circ}W$) > V ($N60{\sim}90^{\circ}E$). Frequency, longest length, total length, mean length and density of fault segments, belonging to group V, show the lowest values. The above order of arrangement among five groups suggests the interrelationship with the relative formation ages of fault segments.

A Study on Machine Failure Improvement Using F-RPN(Failure-RPN): Focusing on the Semiconductor Etching Process (F-RPN(Failure-RPN)을 이용한 장비 고장률 개선 연구: 반도체 식각 공정을 중심으로)

  • Lee, Hyung-Geun;Hong, Yong-Min;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.27-33
    • /
    • 2021
  • The purpose of this study is to present a novel indicator for analyzing machine failure based on its idle time and productivity. Existing machine repair plan was limited to machine experts from its manufacturing industries. This study evaluates the repair status of machines and extracts machines that need improvement. In this study, F-RPN was calculated using the etching process data provided by the 2018 PHM Data Challenge. Each S(S: Severity), O(O: Occurence), D(D: Detection) is divided into the idle time of the machine, the number of fault data, and the failure rate, respectively. The repair status of machine is quantified through the F-RPN calculated by multiplying S, O, and D. This study conducts a case study of machine in a semiconductor etching process. The process capability index has the disadvantage of not being able to divide the values outside the range. The performance of this index declines when the manufacturing process is under control, hereby introducing F-RPN to evaluate machine status that are difficult to distinguish by process capability index.

Effect of Different Variable Selection and Estimation Methods on Performance of Fault Diagnosis (이상진단 성능에 미치는 변수선택과 추정방법의 영향)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.551-557
    • /
    • 2019
  • Diagnosis of abnormal faults is essential for producing high quality products. The role of real-time diagnosis is quite increasing in the batch processes of producing high value-added products such as semiconductors, pharmaceuticals, and so forth. In this study, we evaluate the effect of variable selection and future-value estimation techniques on the performance of the diagnosis system, which is based on nonlinear classification and measurement data. The diagnostic performance can be improved by selecting only the variables that are important and have high contribution for diagnosis. Thus, the diagnostic performance of several variable selection techniques is compared and evaluated. In addition, missing data of a new batch, called future observations, should be estimated because the full data of a new batch is not available before the end of the cycle. In this work the use of different estimation techniques is analyzed. A case study on the polyvinyl chloride batch process was carried out so that optimal variable selection and estimation methods were obtained: maximum 21.9% and 13.3% improvement by variable selection and maximum 25.8% and 15.2% improvement by estimation methods.

Reliability Analysis of LNG FPSO Liquefaction Cycle in DEVS Environment (DEVS 환경에서 LNG FPSO 액화 공정의 신뢰도 해석)

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.2
    • /
    • pp.138-147
    • /
    • 2013
  • The liquefaction process system is regarded as primary among all topside systems in LNG FPSO. This liquefaction process system is composed of many types of equipment. LNG equipment on offshore plants has quite different demands on the equipment compared to traditional onshore LNG plants, so the reliability analysis of this process system needs to be performed. This study investigates how DEVS formalism for discrete event simulation can be used to reliability analysis of the liquefaction cycle for LNG FPSO. The reliability analysis method based on DEVS formalism could be better model for reflecting the system configuration than the conventional reliability analysis methods, such as fault tree analysis and event tree analysis.

Classification of Insulation Fault Signals for High Voltage Motors Stator Winding using Image Signal Process Technique (영상신호처리 기법을 이용한 고압전동기 고정자권선 절연결함신호 분류)

  • Park, Jae-Jun;Kim, Hee-Dong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • Pattern classification of single and multiple discharge sources was applied using a wavelet image signal method in which a feature extraction was applied using a hidden sub-image. A feature extracting method that used vertical and horizontal images using an MSD method was applied to an averaging process for the scale of pulses for the phase. A feature extracting process for the preprocessing of the input of a neural network was performed using an inverse transformation of the horizontal, vertical, and diagonal sub-images. A back propagation algorithm in a neural network was used to classify defective signals. An algorithm for wavelet image processing was developed. In addition, the defective signal was classified using the extracted value that was quantified for the input of a neural network.

Monitoring of semiconductor plasma process using wavelet and X-ray photoelectron spectroscopy (웨이브릿과 X-ray 광전자 분광법을 이용한 반도체 플라즈마 공정 감시 기법)

  • Park, Kyoung-Young;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.281-283
    • /
    • 2005
  • Processing Plasmas are very sensitive to a variation in process parameters, To maintain process quality and device field, plasma malfunction should be tightly monitored with high sensitivity. A new monitoring method is presented and this was accomplished by applying discrete wavelet transformation to X-ray photoelectron spectroscopy. XPS data were collected during a plasma etching of silicon carbide. Various effects of DWT factor on fault sensitivity were optimized experimentally. Compared to raw data, total percent sensitivity for DWT data demonstrated a significantly improved sensitivity to plasma faults induced by bias power.

  • PDF

A Study on the System Safety Assessment of Aircraft (항공기 시스템의 안전성 평가에 관한 연구)

  • Lee, Kyung-Chol;Lee, Jong-Hee;Yi, Baeck-Jun;Yoo, Seung-Woo
    • Journal of Applied Reliability
    • /
    • v.7 no.2
    • /
    • pp.89-100
    • /
    • 2007
  • For the certification of aircraft and part, it must be show the compliance with applicable requirements through system safety assessment. The safety assessment process should be planned and managed to provide the necessary assurance that all relevant failure conditions have been identified and that all significant combinations of failures which could cause those failure conditions have been considered. Complex systems, especially aircraft, should take into account any additional complexities and interdependencies which arise due to integration. In all cases involving integrated systems, the safety assessment process is of fundamental importance in establishing appropriate safety objectives for the system and determining that the implementation satisfies these objectives. This study review the safety assessment for the certification process of the aircraft engine system and analyze turbo-fan engine by fault analysis method for compliance with airworthiness requirement of aircraft engine system.

  • PDF