• Title/Summary/Keyword: process fault

Search Result 939, Processing Time 0.029 seconds

Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Choi, Kyeong-Ho;Lee, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1558-1565
    • /
    • 2015
  • In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-phase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.

Fault Detection of Plasma Etching Processes with OES and Impedance at CCP Etcher

  • Choi, Sang-Hyuk;Jang, Hae-Gyu;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.257-257
    • /
    • 2012
  • Fault detection was carried out in a etcher of capacitive coupled plasma with OES (Optical Emission Spectroscopy) and impedance by VI probe that are widely used for process control and monitoring at semiconductor industry. The experiment was operated at conventional Ar and Fluorocarbon plasma with variable change such as pressure and addition of N2 and O2 to assume atmospheric leak, RF power and pressure that are highly possible to impact wafer yield during wafer process, in order to observe OES and VI Probe signals. The sensitivity change on OES and Impedance by VI probe was analyzed by statistical method including PCA to determine healthy of process. The main goal of this study is to find feasibility and limitation of OES and Impedances for fault detection by shift of plasma characteristics and to enhance capability of fault detection using PCA.

  • PDF

Fuzzy Petri-net Approach to Fault Diagnosis in Power Systems Using the Time Sequence Information of Protection System

  • Roh, Myong-Gyun;Hong, Sang-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1727-1731
    • /
    • 2003
  • In this paper we proposed backward fuzzy Petri-net to diagnoses faults in power systems by using the time sequence information of protection system. As the complexity of power systems increases, especially in the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires new and systematic methods to the reasoning process, which improves both its accuracy and its efficiency. The fuzzy Petri-net models of protection system are composed of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model, which makes use of the nature of fuzzy Petri-net, is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA (Supervisory Control and Data Acquisition)

  • PDF

Intelligent Fault Diagnosis System Using Hybrid Data Mining (하이브리드 데이터마이닝을 이용한 지능형 이상 진단 시스템)

  • Baek, Jun-Geol;Heo, Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.960-968
    • /
    • 2005
  • The high cost in maintaining complex manufacturing process makes it necessary to enhance an efficient maintenance system. For the effective maintenance of manufacturing process, precise fault diagnosis should be performed and an appropriate maintenance action should be executed. This paper suggests an intelligent fault diagnosis system using hybrid data mining. In this system, the rules for the fault diagnosis are generated by hybrid decision tree/genetic algorithm and the most effective maintenance action is selected by decision network and AHP. To verify the proposed intelligent fault diagnosis system, we compared the accuracy of the hybrid decision tree/genetic algorithm with one of the general decision tree learning algorithm(C4.5) by data collected from a coil-spring manufacturing process.

  • PDF

A Quality Assurance Process Model on Fault Management

  • Kim, Hyo-Soo;Baek, Cheong-Ho
    • Journal of Information Processing Systems
    • /
    • v.2 no.3 s.4
    • /
    • pp.163-169
    • /
    • 2006
  • So far, little research has been conducted into developing a QAPM (Quality Assurance Process Model) for telecommunications applications on the basis of TMN. This is the first trial of the design of TMN-based QAPM on fault management with UML. A key attribute of the QAPM is that it can easily identify current deficiencies in a legacy system on the basis of TMN architecture. Using an empirical comparison with the legacy systems of a common carrier validates the QAPM as the framework for a future mode of the operation process. The results indicate that this paper can be used to build ERP(Enterprise Resource Planning) for a telecommunications fault management solution that is one of the network management application building blocks. The future work of this paper will involve applying the QAPM to build ERP for RTE (Real Time Enterprise) fault management solution and more research on ERP design will be necessary to accomplish software reuse.

A Development of the Fault Detection System of Wire Rope using Magnetic Flux Leakage Inspection Method and Noise Filter (누설자속 탐상법 및 노이즈 필터를 이용한 와이어로프의 결함진단시스템 개발)

  • Lee, Young Jin;A, Mi Na;Lee, Kwon Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.418-424
    • /
    • 2014
  • A large number of wire rope has been used in various industries such as cranes and elevators. When wire used for a long time, wire defects occur such as disconnection and wear. It leads to an accident and damage to life and property. To prevent this accident, we proposed a wire rope fault detection system in this paper. We constructed the whole system choosing the leakage fault detection method using hall sensors and the method is simple and easy maintenance characteristics. Fault diagnosis and analysis were available through analog filter and amplification process. The amplified signal is transmitted to the computer through the data acquisition system. This signal could be obtained improved results through the digital filter process.

A real-time operation aiding expert system using the symptom tree and the fault-consequence digraph

  • Oh, Jeon-Keun;Yoon, En-Sup;Choi, Byung-Nam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.805-812
    • /
    • 1989
  • An efficient diagnostic approach for real-time operation aiding expert system in chemical process plants is discussed. The approach is based on the hybrid of the simplified symptom tree(SST) and the fault consequence digraph(FCD), representation of propagation patterns of fault states. The SST generates fault hypothesis efficiently and the FCD resolve the real fault accurately. Frame based knowledge representation and object-oriented programming make diagnostic system general and efficient. Truth maintenance system enables robust pattern matching and provides enhanced explain facilities. A prototype expert system for supports operation of naphtha furnaces process, called OASYS, has been built and tested to demonstrate this methodology. Utilization of diversified process symbolic data, produced using dynamic normal standards, overcomes the problem of qualitative Boolean reasoning and enhance the applicability.

  • PDF

A Study on the Fault Diagnosis of Roll-shape and Fault Tolerant Tension Control in a Continuous Process Systems (롤 형상 이상진단 및 이상극복 장력제어에 관한 연구)

  • 이창우;신기현;강현규;김광용;최승갑;박철재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.963-968
    • /
    • 2003
  • The continuous process systems usually consists of various components: driven rollers. idle rolls, load-cell and so on. Even a simple fault in a single component in the line may cause a catastrophic damage on the final products. Therefore it is absolutely necessary to diagnosis the components of the continuous systems. In this paper, an adaptive eccentricity compensation method is presented. And a new diagnosis method for transverse roll shape defects on rolling process is developed. The new method was induced from analyzing the rolling mechanism by using rolling force model, tension model, Hitchcock's equation, and measured delivery thickness of materials etc. Computer simulation results also show that the proposed diagnosis methods is very effective in the diagnosis of 3-D roll shape

  • PDF

Frameworks for NHPP Software Reliability Growth Models

  • Park, J.Y.;Park, J.H.;Fujiwara, T.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.2
    • /
    • pp.155-166
    • /
    • 2006
  • Many software reliability growth models (SRGMs) based on nonhomogeneous Poisson process (NHPP) have been developed and applied in practice. NHPP SRGMs are characterized by their mean value functions. Mean value functions are usually derived from differential equations representing the fault detection/removal process during testing. In this paper such differential equations are regarded as frameworks for generating mean value functions. Currently available frameworks are theoretically discussed with respect to capability of representing the fault detection/removal process. Then two general frameworks are proposed.

  • PDF

Industrial Process Monitoring and Fault Diagnosis Based on Temporal Attention Augmented Deep Network

  • Mu, Ke;Luo, Lin;Wang, Qiao;Mao, Fushun
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.242-252
    • /
    • 2021
  • Following the intuition that the local information in time instances is hardly incorporated into the posterior sequence in long short-term memory (LSTM), this paper proposes an attention augmented mechanism for fault diagnosis of the complex chemical process data. Unlike conventional fault diagnosis and classification methods, an attention mechanism layer architecture is introduced to detect and focus on local temporal information. The augmented deep network results preserve each local instance's importance and contribution and allow the interpretable feature representation and classification simultaneously. The comprehensive comparative analyses demonstrate that the developed model has a high-quality fault classification rate of 95.49%, on average. The results are comparable to those obtained using various other techniques for the Tennessee Eastman benchmark process.