• Title/Summary/Keyword: process fault

Search Result 939, Processing Time 0.028 seconds

Machine Learning Process for the Prediction of the IT Asset Fault Recovery (IT자산 장애처리의 사전 예측을 위한 기계학습 프로세스)

  • Moon, Young-Joon;Rhew, Sung-Yul;Choi, Il-Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.281-290
    • /
    • 2013
  • The IT asset is a core part that supports the management objective of an organization, and the fast settlement of the IT asset fault is very important. In this study, a fault recovery prediction technique is proposed, which uses the existing fault data to address the IT asset fault. The proposed fault recovery prediction technique is as follows. First, the existing fault recovery data were pre-processed and classified by fault recovery type; second, a rule was established for the keyword mapping of the classified fault recovery types and reported data; and third, a machine learning process that allows the prediction of the fault recovery method based on the established rule was presented. To verify the effectiveness of the proposed machine learning process, company A's 33,000 computer fault data for the duration of six months were tested. The hit rate for fault recovery prediction was approximately 72%, and it increased to 81% via continuous machine learning.

Process fault diagnostics using the integrated graph model

  • Yoon, Yeo-Hong;Nam, Dong-Soo;Jeong, Chang-Wook;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1705-1711
    • /
    • 1991
  • On-line fault detection and diagnosis has an increasing interest in a chemical process industry, especially for a process control and automation. The chemical process needs an intelligent operation-aided workstation which can do such tasks as process monitoring, fault detection, fault diagnosis and action guidance in semiautomatic mode. These tasks can increase the performance of a process operation and give merits in economics, safety and reliability. Aiming these tasks, series of researches have been done in our lab. Main results from these researches are building appropriate knowledge representation models and a diagnosis mechanism for fault detection and diagnosis in a chemical process. The knowledge representation schemes developed in our previous research, the symptom tree model and the fault-consequence digraph, showed the effectiveness and the usefulness in a real-time application, of the process diagnosis, especially in large and complex plants. However in our previous approach, the diagnosis speed is its demerit in spite of its merits of high resolution, mainly due to using two knowledge models complementarily. In our current study, new knowledge representation scheme is developed which integrates the previous two knowledge models, the symptom tree and the fault-consequence digraph, into one. This new model is constructed using a material balance, energy balance, momentum balance and equipment constraints. Controller related constraints are included in this new model, which possesses merits of the two previous models. This new integrated model will be tested and verified by the real-time application in a BTX process or a crude unit process. The reliability and flexibility will be greatly enhanced compared to the previous model in spite of the low diagnosis speed. Nexpert Object for the expert system shell and SUN4 workstation for the hardware platform are used. TCP/IP for a communication protocol and interfacing to a dynamic simulator, SPEEDUP, for a dynamic data generation are being studied.

  • PDF

Fault Detection Method for Multivariate Process using ICA (독립성분분석을 이용한 다변량 공정에서의 고장탐지 방법)

  • Jung, Seunghwan;Kim, Minseok;Lee, Hansoo;Kim, Jonggeun;Kim, Sungshin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.192-197
    • /
    • 2020
  • Multivariate processes, such as large scale power plants or chemical processes are operated in very hazardous environment, which can lead to significant human and material losses if a fault occurs. On-line monitoring technology, therefore, is essential to detect system faults. In this paper, the ICA-based fault detection method is conducted using three different multivariate process data. Fault detection procedure based on ICA is divided into off-line and on-line processes. The off-line process determines a threshold for fault detection by using the obtained dataset when the system is normal. And the on-line process computes statistics of query vectors measured in real-time. The fault is detected by comparing computed statistics and previously defined threshold. For comparison, the PCA-based fault detection method is also implemented in this paper. Experimental results show that the ICA-based fault detection method detects the system faults earlier and better than the PCA-based method.

Review of expert system applications to chemical process fault diagnosis (화학공정 결함진단을 위한 전문가 시스템 적용에 관한 고찰)

  • 오전근;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.674-679
    • /
    • 1987
  • Process failures can occur at any time during operation, so a continuous effort of fault detection, diagsis, and correction is required. Expert system paridigm has been regarded as a promising approach to real time process supervisory control especially to fault diagnosis. The most important aspects of fault diagnostic expert systems(FDES) are the problem-solving inference strategy and knowledge organizations. The necessity of FDES, the nature of diagnostic knowledge, the representation of knowledge, and the inference mechanism of FDES, et al. are described, which are announced by previous researchers. And the existing FDES are categorized and critically reviewed in this work.

  • PDF

PCA Based Fault Diagnosis for the Actuator Process

  • Lee, Chang Jun
    • International Journal of Safety
    • /
    • v.11 no.2
    • /
    • pp.22-25
    • /
    • 2012
  • This paper deals with the problem of fault diagnosis for identifying a single fault when the number of assumed faults is larger than that of predictive variables. Principal component analysis (PCA) is employed to isolate and identify a single fault. PCA is a method to extract important information as reducing the number of large dimension in a process. The patterns of all assumed faults can be recognized by PCA and these can be employed whether a new fault is one of predefined faults or not. Through PCA, empirical models for analyzing patterns can be trained. When a single fault occurs, the pattern generated by PCA can be obtained and this is used to identify a fault. The performance of the proposed approach is illustrated in the actuator benchmark problem.

Observer Design for Robust Process Fault Estimation (견실한 프로세스 고장추정을 위한 관측기 설계)

  • Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2182-2184
    • /
    • 2004
  • This paper presents a systematic and straightforward fault estimation approach for process fault detection. isolation and accommodation. The approach includes the design of a reduced-order observer and an algebraic-fault estimator. The observer is designed for an unknown input and fault-free system, which is obtained by coordinate transformations of original systems with unknown inputs and faults. The observer information is devoted to- the fault estimation for fault detection and isolation. The fault estimates can be used to form an additional control input to accommodate the fault. The suggested scheme is verified through simulation studies performed on the control of a vertical takeoff and landing (VTOL) aircraft in the vertical plane.

  • PDF

Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process (주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발)

  • Park, Jae Yeon;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

A New Fault Detection and Accomodation Scheme in Estimator Based Control Systems

  • Lee, Kee-Sang;Park, Eui-Sung;Park, Seung-Yub
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.197-201
    • /
    • 1988
  • A reliable Analytical Redundancy(AR) based Fault Detection Scheme(FDS) that can detect, discriminate sensor fault and process fault is presented. And a Fault Tolerant Control System ( FTCS ) with the FDS that performs original control objective without considerable loss of control performance in the face of sensor/process faults is constructed. These propositions are valuable in the sense that it resolves the well known sensitivity problem and that sensor/process faults can be detected, discriminated so that effects of any fault can be promptly accomodated by reconfiguring control system structure automatically.

  • PDF

Development of Neuro-Fuzzy-Based Fault Diagnostic System for Closed-Loop Control system (페푸프 제어 시스템을 위한 퍼지-신경망 기방 고장 진단 시스템의 개발)

  • Kim, Seong-Ho;Lee, Seong-Ryong;Gang, Jeong-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.494-501
    • /
    • 2001
  • In this paper an ANFIS(Adativo Neuro-Fuzzy Inference System)- based fault detection and diagnosis for a closed loop control system is proposed. The proposed diagnostic system contains two ANFIS. One is run as a parallel model within the model in closed loop control(MCL) and the other is run as a series-parallel model within the process in closed loop(PCL) for the generation of relevant symptoms for fault diagnosis. These symptoms are further processed by another classification logic with simple rules and neural network for process and controller fault diagnosis. Experimental results for a DC shunt motor control system illustrate the effectiveness of the proposed diagnostic scheme.

  • PDF

Identifying Causes of Industrial Process Faults Using Nonlinear Statistical Approach (공정 이상원인의 비선형 통계적 방법을 통한 진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3779-3784
    • /
    • 2012
  • Real-time process monitoring and diagnosis of industrial processes is one of important operational tasks for quality and safety reasons. The objective of fault diagnosis or identification is to find process variables responsible for causing a specific fault in the process. This helps process operators to investigate root causes more effectively. This work assesses the applicability of combining a nonlinear statistical technique of kernel Fisher discriminant analysis with a preprocessing method as a tool of on-line fault identification. To compare its performance to existing linear principal component analysis (PCA) identification scheme, a case study on a benchmark process was performed to show that the fault identification scheme produced more reliable diagnosis results than linear method.