DOI QR코드

DOI QR Code

Fault Detection Method for Multivariate Process using ICA

독립성분분석을 이용한 다변량 공정에서의 고장탐지 방법

  • Jung, Seunghwan (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Minseok (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Hansoo (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Jonggeun (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Sungshin (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2019.12.13
  • Accepted : 2020.01.01
  • Published : 2020.02.29

Abstract

Multivariate processes, such as large scale power plants or chemical processes are operated in very hazardous environment, which can lead to significant human and material losses if a fault occurs. On-line monitoring technology, therefore, is essential to detect system faults. In this paper, the ICA-based fault detection method is conducted using three different multivariate process data. Fault detection procedure based on ICA is divided into off-line and on-line processes. The off-line process determines a threshold for fault detection by using the obtained dataset when the system is normal. And the on-line process computes statistics of query vectors measured in real-time. The fault is detected by comparing computed statistics and previously defined threshold. For comparison, the PCA-based fault detection method is also implemented in this paper. Experimental results show that the ICA-based fault detection method detects the system faults earlier and better than the PCA-based method.

대규모 발전소나 화학공정과 같은 다변량 공정은 매우 위험한 환경에서 운전되기 때문에 고장이 발생하면 심각한 인적·물적 손실이 발생할 수 있다. 따라서 시스템의 고장을 사전에 탐지할 수 있는 온라인 모니터링 기술이 필수적이다. 본 논문에서는 세 가지의 다른 다변량 공정 데이터에 ICA를 적용하여 고장탐지를 수행하였고, PCA와 성능을 비교하였다. ICA 기반의 고장탐지 절차는 크게 오프라인 과정과 온라인 과정으로 나뉜다. 오프라인 과정에서는 시스템이 정상일 때 계측된 데이터를 이용하여 고장판별을 위한 문턱 값을 설정한다. 그리고 온라인 과정에서는 실시간으로 계측되는 질의벡터에 대한 통계량을 계산한 후, 계산된 통계량과 사전에 정의된 문턱 값과 비교하여 고장을 판별한다. 본 논문에서 이용한 세 가지의 다변량 공정 데이터에 실험한 결과, ICA 기반 고장탐지 방법이 시스템의 고장을 사전에 탐지하였고, PCA 보다 우수한 고장탐지 성능을 보여주었다.

Keywords

References

  1. J. S. Oh, "Straight Line Detection Using PCA and Hough transform," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 7, pp. 227-232, Feb. 2018.
  2. J. M. Lee, C. K. Yoo, and I. B. Lee, "Statistical monitoring of dynamic processes based on dynamic independent component analysis," Chemical Engineering Science, vol. 59, pp. 2995-3006, Jul. 2004. https://doi.org/10.1016/j.ces.2004.04.031
  3. W. Ku, R. H. Storer, and C. Georgakis, "Disturbance detection and isolation by dynamic principal component analysis," Chemometrics and Intelligent Laboratory System, vol. 30, pp. 179-196, 1995. https://doi.org/10.1016/0169-7439(95)00076-3
  4. M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno, "A new multivariate statistical process monitoring method using principal component analysis," Computer and Chemical Engineering, vol. 25, pp. 1103-1113, 2001. https://doi.org/10.1016/S0098-1354(01)00683-4
  5. M. Z. Sheriff, M. Mansouri, M. N. Karim, H. Nounou, and M. Nounou, "Fault detection using multiscale PCA-based moving window GLRT," Journal of Process Control, vol. 54, pp. 47-64, 2017. https://doi.org/10.1016/j.jprocont.2017.03.004
  6. F. Zhou, J. H. Park, and Y. Liu, "Differential feature based hierarchical PCA fault detection method for dynamic fault," Neurocomputing, vol. 202, pp. 27-35, 2016. https://doi.org/10.1016/j.neucom.2016.03.007
  7. M. Zvokelj, S. Zupan, and I. Prebil, "EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis," Journal of Sound and Vibration, vol. 370, pp. 394-423, 2016. https://doi.org/10.1016/j.jsv.2016.01.046
  8. S. Jung, M. Kim, J. Jang, J. Yoo, and S. Kim, "Fault detection and Diagnosis for High Pressure Feedwater Heater using Principal Component Analysis," Journal of Korean Institute of Intelligent Systems, vol. 27, no, 2, Nov. 2017.
  9. S. Jung, B. Kim, J. Jang, J. Yoo, and S. Kim, "Fault detection method for high pressure feedwater heater in thermal power plant using independent component analysis," Proceedings of KIIS Autumn Conf, vol. 28, no, 3, Nov. 2018.
  10. A. Hyvarinen, "Fast and robust fixed-point algorithm for independent component analysis," IEEE Trans. Neural Networks, vol. 10, no. 3, pp. 626-634, 1999. https://doi.org/10.1109/72.761722
  11. A. D. Back, and A. S. Weigend, "A first application of independent component analysis to extracting structure from stock returns," International Journal of Neural Systems, vol. 8, no. 4, pp. 473-484, 1997. https://doi.org/10.1142/S0129065797000458
  12. A. Hyvarinen, "Survey on independent component analysis," Neural computing surveys, vol. 2, no. 4, pp. 94-128, 1999. Control, vol. 68, pp. 129-144, 1999.