• Title/Summary/Keyword: process control,

Search Result 14,973, Processing Time 0.042 seconds

Design of On-line Process Control with Variable Measurement Interval

  • Park, Changsoon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.319-336
    • /
    • 2000
  • A mixed model with a white noise process and an IMA(0,1,1) process is considered as a process model. It is assumed that the process is a white noise in the absence of a special cause and the process changes to an IMA(0,1,1) due to a special cause. One useful scheme in measuring the process level is to use the variable measurement interval (VMI) between measurement times according to the value of the previous chart statistic. The advantage of the VMI scheme is to measure the process level infrequently when in control to save the measurement cost and to measure frequently when out of control to save the off-target cost. This paper considers the VMI scheme in order to detect changes in the process model from a white noise to an IMA(0,1,1). The VMI scheme is shown to be effective compared to the standard fixed measurement interval (FMI) scheme in both statistical and economic contexts.

  • PDF

SOS-Net for Generattion of PLC Program (PLC 프로그램 생성을 위한 SOS-Net)

  • Ko, Min-Suk;Hong, Sang-Hyun;Wang, Gi-Nam;Park, Sang-Cheul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • Because of the reduced product life-cycle, industries are making an effort to bring down the process planning time. In the traditional approach, we have to analyze established process planning, then design the time chart based on process information and drawing the formal time chart such as SOP(sequence of operation). Thereafter, it will be converted to PLC code that is a time consuming and redundant job. Similarly, Industrial automated process uses PLC Code to control the factory; however, control information and control code(PLC code) are difficult to understand. Hence, industries prefer writing new control code instead of using the existing one. It shows the lack of information reusability in the existing process planning. As a result, to reduce this redundancy and lack of reusability, we propose SOS-Net modeling method. Unlike past stabilized process planning that is rigid to any change; our proposed SOS-Net modeling method is more adaptable to the new changes. The SOS-Net model is easy to understand and easy to convert into PLC Code accordingly. Therefore, we can easily modify the control information and reuse it for new process planning. The proposed model plays an intermediary role between process planning and PLC code generation. It can reduce the process planning and implementation time as well as cost.

Simultaneous Control of Cutting Force and Position Using Two Degree-of- Freedom Controller in CNC Ball-end Milling Process (2자유도 제어기를 이용한 CNC볼엔드밀링 공정에서 절삭력과 위치의 동시제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.536-542
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control and position control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant feed speed. The second is a simultaneous control of feed and spindle speed. The last performs a position control under the constant cutting force. Those are confirmed to work properly. Especially the latter shows a faster response.

  • PDF

Statistical process control of dye solution stream using spectrophotometer

  • Lee, Won-Jae;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1289-1303
    • /
    • 2010
  • The need for statistical process control to check the performance of a process is becoming more important in chemical and pharmaceutical industries. This study illustrates the method to determine whether a process is in control and how to produce and interpret control charts. In the experiment, a stream of green dyed water and a stream of pure water were continuously mixed in the process. The concentration of the dye solution was measured before and after the mixer via a spectrophotometer. The in-line mixer provided benefits to the dye and water mixture but not for the stock dye solution. The control charts were analyzed, and the pre-mixer process was in control for both the stock and mixed solutions. The R and X-bar charts showed virtually all of the points within control limits, and there were no patterns in the X-bar charts to suggest nonrandom data. However, the post-mixer process was shown to be out of control. While the R charts showed variability within the control limits, the X-bar charts were out of control and showed a steady increase in values, suggesting that the data was nonrandom. This steady increase in dye concentration was due to discontinuous, non-steady state flow. To improve the experiment in the future, a mixer could be inserted into the stock dye tank. The mixer would ensure that the dye concentration of the stock solution is more uniform prior to entering the pre-mixer ow cell. Overall, this would create a better standard to judge the water and dye mixture data against as well.

A Study on Process Control Modeling for Precision Guided Munitions Quality Control (정밀유도무기 품질관리를 위한 공정관리 수행모델에 관한 연구)

  • Kim, Si-Ok;Lee, Chang-Woo;Cha, Sung-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.41 no.3
    • /
    • pp.487-494
    • /
    • 2013
  • Purpose: In this study, we propose the precision guided munitions verification methodology using the statistical analysis method has been proposed. and it can be applied to the precision guided munitions quality assurance work. Methods: This modeling is based on Failure Mode and Effects Analysis, Statistical Process Control, Defense Quality Managerment System, Production Readiness Review, Manufacturing Readiness Assesment and so on. Results: The Process Control Modeling that has the following procedures ; searching the critical to quality, statistical analysis by process, verify process. Moreover, the effectiveness of the methodology is verified by applying to the precision guided munitions. Conclusion: To achieve a analysis methods of statistical process control and verify process for precision guided munitions.

Update Cycle Detection Method of Control Limits using Control Chart Performance Evaluation Model (관리도 성능평가모형을 통한 관리한계선 갱신주기 탐지기법)

  • Kim, Jongwoo;Park, Cheong-Sool;Kim, Jun Seok;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.43-51
    • /
    • 2014
  • Statistical process control (SPC) is an important technique for monitoring and managing the manufacturing process. In spite of its easiness and effectiveness, some problematic sides of application exist such that the SPC techniques are hardly reflect the changes of the process conditions. Especially, update of control limits at the right time plays an important role in acquiring a reasonable performance of control charts. Therefore, we propose the control chart performance evaluation index (CPEI) based on count data model to monitor and manage the performance of control charts. The CPEI could indicate the degree of control chart performance and be helpful to detect the proper update cycle of control limits in real time. Experiments using real manufacturing data show that the proper update intervals are made by proposed method.

Design of Combined Shewhart-CUSUM Control Chart using Bootstrap Method (Bootstrap 방법을 이용한 결합 Shewhart-CUSUM 관리도의 설계)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • Statistical process control is used widely as an effective tool to solve the quality problems in practice fields. All the control charts used in statistical process control are parametric methods, suppose that the process distributes normal and observations are independent. But these assumptions, practically, are often violated if the test of normality of the observations is rejected and/or the serial correlation is existed within observed data. Thus, in this study, to screening process, the Combined Shewhart - CUSUM quality control chart is described and evaluated that used bootstrap method. In this scheme the CUSUM chart will quickly detect small shifts form the goal while the addition of Shewhart limits increases the speed of detecting large shifts. Therefor, the CSC control chart is detected both small and large shifts in process, and the simulation results for its performance are exhibited. The bootstrap CSC control chart proposed in this paper is superior to the standard method for both normal and skewed distribution, and brings in terms of ARL to the same result.

Optimal Design of c Control Chart using Variable Sampling Interval (가변추출간격을 이용한 c 관리도의 최적설계)

  • Park, Joo-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.215-233
    • /
    • 2007
  • Even though the ad hoc Shewhart methods remain controversial due to various mathematical flaws, there is little disagreement among researchers and practitioners when a set of process data has a skewness distribution. In the context and language of process control, the error related to the process data shows that time to signal increases when a control parameter shifts to a skewness direction. In real-world industrial settings, however, quality practitioners often need to consider a skewness distribution. To address this situation, we developed an enhanced design method to utilize advantages of the traditional attribute control chart and to overcome its associated shortcomings. The proposed design method minimizes bias, i.e., an average time to signal for the shift of process from the target value (ATS) curve, as well as it applies a variable sampling interval (VSI) method to an attribute control chart for detecting a process shift efficiently. The results of the factorial experiment obtained by various parameter circumstances show that the VSI c control chart using nearly unbiased ATS design provides the smallest decreasing rate in ATS among other charts for all experimental cases.

Robust Control Chart using Bootstrap Method (붓스트랩 방법을 이용한 로버스트 관리도)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.3
    • /
    • pp.39-49
    • /
    • 2003
  • Statistical process cintrol is intended to assist operators of a stable system in monitoring whether a change has occurred in the process, and it uses several control charts as main tools. In design and use of control chart, it is rational that probability of false alarm is minimized in stable process and probability of detecting shifts is maximized in out-of-control. In this study, we establish bootstrap control limits for robust M-estimator chart by applying the bootstrap method, called resampling, which could not demand assumptions about pre-distribution when the process is skewed and/or the normality assumption is doubt. The results obtained in this study are summarized as follows : bootstrap M-estimator control chart is developed for applying bootstrap method to M-estimator chart, which is more robust to keep ARL when process contain contaminate quality characteristic.

Applications of neural networks in manufacturing process monitoring and control

  • Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.11-21
    • /
    • 1992
  • Modern manufacturing process requires machine intelligence to meet the demands for high technology products as well as intelligence-based operating skills to lessen human worker's intervene. To meet this trend there has been wide spread interest in applying artificial neural network(ANN) to the areas of manufacturing process monitoring and control. This paper addresses application problems in such processes as welding, assembly, hydroforming process and inspection of solder joints.

  • PDF