• Title/Summary/Keyword: procaspase-3

Search Result 82, Processing Time 0.024 seconds

The Induction Effect of Apoptosis in A549 Human Lung Cancer Cells by the Trichosanthes Kirilowii Pharmacopuncture Solution (천화분 약침액의 A549 폐암 세포주에서 apoptosis 유발효과)

  • Choi, Tae-Yeon;Lee, Sung-Won;Ryu, Yeon-Hee;Ban, Hyo-Jeong;Seo, Geun-Young;Kim, Jae-Hyo;Ahn, Seong-Hun;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.27 no.4
    • /
    • pp.15-23
    • /
    • 2010
  • Objectives : In order to confirm the anti-cancer effect of Trichosanthes kirilowii pharmacopuncture fluid, this study was proceeded. Methods : A549 lung cancer cells were cultured to be treated by Trichosanthes kirilowii pharmacopuncture fluid as dose dependent manner for 72 hours. And then the cell viability, nucleus fragmentaion, p21 and p53 protein expression, Bcl-2 and Bax protein expression, procaspase-3 PARP protein expression. Results : 1. Trichosanthes kirilowii pharmacopuncture fluid decrease A549 cell viability as dose dependent manner. 2. Trichosanthes kirilowii pharmacopuncture fluid induced the nucleus fragmentation in A549 lung cancer cells as dose dependent manner. 3. Trichosanthes kirilowii pharmacopuncture fluid increase the p21 and p53 protein expression. 4. Trichosanthes kirilowii pharmacopuncture fluid decrease the Bcl-2 protein expression but cannot affect the Bax protein expression. 5. Trichosanthes kirilowii pharmacopuncture fluid increase the activation of caspase-3 and PARP protein. Conclusions : As the above results, it was conclused the Trichosanthes kirilowii pharmacopuncture fluid had the anti-cancer effects to induce apoptosis.

The effects of Somok on apoptosis of human liver cancer HepG2 cell. (소목(蘇木)이 사람 간암 세포주인 HepG2의 세포사멸에 미치는 영향과 그 경로)

  • Kim, Pan-Jun;Yun, Hyun-Joung;Lee, Young-Tae;Seo, Kyo-Soo;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.13 no.2
    • /
    • pp.111-123
    • /
    • 2005
  • The purpose of this study was to investigate the anticancer effects of Caesalpiniae Lignum (Somok) on HepG2 cells, a human liver cancer cell line. To study the cytotoxic effect of Caesalpiniae Lignum methanol extract (CL-MeOH) on HepG2 cells, the cells were treated with various concentrations of CL-MeOH and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. CL-MeOH reduced proliferation of HepG2 cells in a dose-dependent manner. To confirm the induction of apoptosis, HepG2 cells were treated with various concentrations of CL-MeOH. The activation of caspase 3 and the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, was examined by western blot analysis. CL-MeOH decreased procaspase 3 level in a dose-dependent manner and induced the clevage of PARP at concentration> $200{\mu}/ml$. Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. CL-MeOH-induced MAPK activation was examined by Western blot for phosphorylated ERK, p38 and JNK. CL-MeOH significantly increased p38 phosphorylation and JNK phosphorylation in a dose-dependent manner. Inhibition of p38 function using the selective inhibitor SB20358O results in inhibition of apoptosis by CL-MeOH. These results suggest that CL-MeOH-induced apoptosis is MAP kinase-dependent apoptoric pathway. These results suggest that CL-MeOH is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

S Phase Cell Cycle Arrest and Apoptosis is Induced by Eugenol in G361 Human Melanoma Cells

  • Rachoi, Byul-Bo;Shin, Sang-Hun;Kim, Uk-Kyu;Hong, Jin-Woo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.129-134
    • /
    • 2011
  • Eugenol is an essential oil found in cloves and cinnamon that is used widely in perfumes. However, the significant anesthetic and sedative effects of this compound have led to its use also in dental procedures. Recently, it was reported that eugenol induces apoptosis in several cancer cell types but the mechanism underlying this effect has remained unknown. In our current study, we examined whether the cytotoxic effects of eugenol upon human melanoma G361 cells are associated with cell cycle arrest and apoptosis using a range of methods including an XTT assay, Hoechst staining, immunocyto-chemistry, western blotting and flow cytometry. Eugenol treatment was found to decrease the viability of the G361 cells in both a time- and dose-dependent manner. The induction of apoptosis in eugenol-treated G361 cells was confirmed by the appearance of nuclear condensation, the release of both cytochrome c and AIF into the cytosol, the cleavage of PARP and DFF45, and the downregulation of procaspase-3 and -9. With regard to cell cycle arrest, a time-dependent decrease in cyclin A, cyclin D3, cyclin E, cdk2, cdk4, and cdc2 expression was observed in the cells after eugenol treatment. Flow cytometry using a FACScan further demonstrated that eugenol induces a cell cycle arrest at S phase. Our results thus suggest that the inhibition of G361 cell proliferation by eugenol is the result of an apoptotic response and an S phase arrest that is linked to the decreased expression of key cell cycle-related molecules.

Mechanisms of Siegesbeckia Glabrescens-induced Smooth Muscle Cell Apoptosis: Role of iNOS and PKC${\alpha}$ (희첨의 iNOS 발현과 PKC${\alpha}$ 억제를 통한 혈관평활근세포의 apoptosis 유도)

  • Lee, Seung-Yeul;Jun, Soo-Young;Kim, Jong-Bong;Jang, Hyo-Oil;Kim, Gil-Whon;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1233-1240
    • /
    • 2006
  • We have recently demonstrated that Siegesbeckia glabrescens(SG), a herbal medicine, induces apoptosis via nitric oxide(NO) production in human aortic smooth muscle cells(HASMCS). However, the molecular pathways involved in SG-mediated apoptosis are not fully understand. In the present study, we investigated the cellular mechanisms of SG-induced apoptosis in HASMCS. SG induced NO production through inducible nitric oxide synthase(iNOS) induction. The apoptotic effect of SG was attenuated by L-NNA, a NOS inhibitor. In the presence of L-NNA, the degradation of procaspase-3 by SG was inhibited. SG treatment induced a decrease in Bcl-2 expression but did not affect the expression of Bax. In addition, SG treatment evoked both down-regulation of PKC ${\alpha}$ and inhibition of PKC ${\alpha}$ phosphorylation. These downregulations were reversed by addition of L-NNA. It seems likely to De a downregulation of PKC${\alpha}$ due to long term treatment with PMA. Taken together, these results suggest that apoptotic effects of SG may be due to NO production via iNOS mRNA expression. Furthermore, Bcl-2 and PKC${\alpha}$ downregulation, and caspase-3 activation may be involved in the mechanisms for apoptotic effects by SG.

Antiproliferative and Cytotoxic Effects of Resveratrol in Mitochondria-Mediated Apoptosis in Rat B103 Neuroblastoma Cells

  • Rahman, Md. Ataur;Kim, Nam-Ho;Kim, Seung-Hyuk;Oh, Sung-Min;Huh, Sung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.321-326
    • /
    • 2012
  • Resveratrol, a natural compound, has been shown to possess anti-cancer, anti-aging, anti-inflammatory, anti-microbial, and neuroprotective activities. In this study, we examined the antiproliferative and cytotoxicity properties of resveratrol in Rat B103 neuroblastoma cells; although it's molecular mechanisms for the biological effects are not fully defined. Here, we examined the cellular cytotoxicity of resveratrol by cell viability assay, antiproliferation by BrdU assay, DNA fragmentation by DNA ladder assay, activation of caspases and Bcl-2 family proteins were detected by western blot analyses. The results of our investigation suggest that resveratrol increased cellular cytotoxicity of Rat B103 neuroblastoma cells in a dose-and time-dependent manner with $IC_{50}$ of 17.86 ${\mu}M$ at 48 h. On the other hand, incubation of neuroblastoma cells with resveratrol resulted in S-phase cell cycle arrests which dose-dependently and significantly reduced BrdU positive cells through the downregulation of cyclin D1 protein. In addition, resveratrol dose-dependently and significantly downregulated the expression of anti-apoptotic protein includes Bcl-2, Bcl-xL and Mcl-1 and also activates cleavage caspase-9 and-3 via the downregulation of procaspase-9 and -3 in a dose-dependent manner which indicates that involvement of intrinsic mitochondria-mediated apoptotic pathway. In conclusion, resveratrol increases cellular cytotoxicity and inhibits the proliferation of B103 neuroblastoma cells by inducing mitochondria-mediated intrinsic caspase dependent pathway which suggests this natural compound could be used as therapeutic purposes for neuroblastoma malignancies.

Apoptotic Effects of Cordycepin Through the Extrinsic Pathway and p38 MAPK Activation in Human Glioblastoma U87MG Cells

  • Baik, Ji-Sue;Mun, Seo-Won;Kim, Kyoung-Sook;Park, Shin-Ji;Yoon, Hyun-Kyoung;Kim, Dong-Hyun;Park, Min-Kyu;Kim, Cheorl-Ho;Lee, Young-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.309-314
    • /
    • 2016
  • We first demonstrated that cordycepin inhibited cell growth and triggered apoptosis in U87MG cells with wild-type p53, but not in T98G cells with mutant-type p53. Western blot data revealed that the levels of procaspase-8, -3, and Bcl-2 were downregulated in cordycepin-treated U87MG cells, whereas the levels of Fas, FasL, Bak, cleaved caspase-3, -8, and cleaved PARP were upregulated, indicating that cordycepin induces apoptosis by activating the death receptor-mediated pathway in U87MG cells. Cordycepin-induced apoptosis could be suppressed by only SB203580, a p38 MAPK-specific inhibitor. These results suggest that cordycepin triggered apoptosis in U87MG cells through p38 MAPK activation and inhibition of the Akt survival pathway.

Methanol Extract of Goat's-beard (Aruncus dioicus) Reduces Renal Injury by Inhibiting Apoptosis in a Rat Model of Ischemia-Reperfusion

  • Baek, Hae-Sook;Lim, Sun-Ha;Ahn, Ki-Sung;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • Interruption or prolonged reduction and subsequent restoration of blood flow into the kidney triggers the generation of a burst of reactive oxygen species (ROS), leading to injury in the tubular epithelial cells. In this study, we determined whether methanol extract of goat's-beard (Aruncus dioicus) (extract) could prevent this ischemia/reperfusion injury. When in vitro radical scavenging activity of the extract was measured using a DPPH radical quenching assay, the extract displayed slightly lower activity than ascorbic acid. One hour after administration of the extract (400 mg/kg) by intraperitoneal injection in rats, renal ischemia/reperfusion injury was generated by clamping the left renal artery for forty minutes, followed by 24 hr restoration of blood circulation. Prior to clamping the left renal artery, the right renal artery was removed. Compared with the vehicle-treated group, pretreatment with the extract significantly reduced the tubular epithelial cell injury by 37% in the outer medulla region, and consequently reduced serum creatinine concentration by 39%. Reduction in the cell injury was mediated by attenuation of Bax/Bcl-2 ratio, inhibition of caspase-3 activation from procaspase-3, and subsequent reduction in the number of apoptotic cells. Thus, goat's-beard (Aruncus dioicus) might be developed as a prophylactic agent to prevent acute kidney injury.

Effects of Mifepristone and Tamoxifen on Calcium Modulation in DU-145 Prostate Cancer Cells (DU-145 전립선 암세포에 있어서 mifepristone과 tamoxifen이 칼슘조절에 미치는 영향)

  • Kim, Yeo-Reum;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1324-1331
    • /
    • 2010
  • Mifepristone (MIF) and Tamoxifen (TAM) have been used in the treatment of prostate cancer and breast cancer for more than a decade. MIF can induce apoptosis in both AR-positive and negative prostate cancer cells. Because of its pleiotropic ligand-receptor properties, TAM exerts cytotoxic activity in estrogen (ER)-positive and various ER.negative cancer cells. However, the molecular mechanisms of these two substances are not yet clear. In the present work, we report that the cytotoxic effects of MIF and TAM are due to the modulation of intracellular $Ca^{2+}$ level in DU-145, androgen-insensitive cells. When the cells were treated with micromolar concentrations of either MIF or TAM, the growth and viability were significantly decreased in a dose- and time-dependent manner. The apoptosis induced by MIF or TAM was further proved and analyzed by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS). In the cells cultivated in a normal 1.5 mM $Ca^{2+}$ medium, both MIF and TAM also induced an increase of the intracellular $Ca^{2+}$ level in a dose-dependent fashion. Since a change in calcium level could not be found in cells of the $Ca^{2+}$-free medium, the increase of intracellular $Ca^{2+}$ level might be due to an increase in extracellular calcium uptake. Our results show that the apoptotic effect was more prominent in TAM treatment compared to MIF treatment in DU-145 cells. The above findings might be due to the difference in the uppermost pathways of apoptosis induced by either MIF or TAM. When we checked the level of procaspase-8 activation, TAM showed minor level of activation, as opposed to MIF, which exerted strong activation. In both treatments, the levels of anti-apoptotic protein Bcl-2 decreased, and pro-apoptotic protein Bax level increased more than 2-fold. The activation of caspase-3, a key protease enzyme in the downstream pathway of apoptosis, was much higher in the cells treated with TAM, compared to the MIF treatment. The overall apoptotic activity shown in the present work was closely related to intracellular $Ca^{2+}$ concentration levels. Therefore, the cytotoxic activity induced by MIF and TAM might have been due to intracellular calcium modulation.

Inhibition of Cellular Proliferation by p53 dependent Apoptosis and G2M Cell Cycle Arrest of Saussurea lappa CLARKE in AGS Gastric Cancer Cell Lines

  • Jeong Han Su;Kim Dong Jo;Heo Geum Jeong;Nam Chang Gyu;Go Seong Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1186-1191
    • /
    • 2004
  • The root of Saussurea lappa includes sesquiterpene lactones such as costunolide and dehydrocostus lactone, and has been shown to be anti-tumorigenic with being used in traditional medicinal therapy in the Eastern Asia. However, the molecular basis of the effects of Saussurea lappa on fate of gastric carcinoma, which incur very frequently in the area, has not been well identified. In this study, the cytostatic effects of Saussurea lappa were examined using gastric AGS cancer cells. Cell viability was dramatically reduced by Saussurea lappa, in a dose-dependent manner. As time passed after its treatment, apoptotic population was increased and clearly showed G2-arrest. Being consistent, its treatment resulted in maintaining of G1 and S-phase cyclins D1, E, and A even until a significant apoptotic population was observed, for example, at 24h after treatment. However, G2/M phase cyclin B1 was reduced even at 12 h after treatment. In addition, its treatment increased expression of p53, p21/sup Wafl / cyclin dependent kinase inhibitor (CKI), and Bax, resulted in cleavages of procaspase 3 and poly ADP-ribose polymerase(PARP), indicating that such G2 arrest- and apoptosis-related molecules are involved. Therefore, these suggest that extracts of Saussurea lappa root may be a safer and effective reagent to deal with gastric cancers either by traditional herbal therapy or combinational therapy with conventional chemotherapy.

Cytoprotective Effects of Artemisia princeps Extract through Inhibition of Mitochondrial Dysfunction (애엽(艾葉)의 미토콘드리아 보호 효과)

  • Choi, Hee Yoon;Jeggal, Kyung Hwan;Kim, Young Woo;Lee, Jung Woo;Jo, Soo A;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.21 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • Objectives : Artemisia princeps is used as moxa in moxibustion and traditional herbal medicine. And its extracts or compounds is known to have an efficacy of antioxidant, anti-diabete, anti-cancer, anti-inflammation and neuroprotection. This study was performed to investigate the cytoprotective effect of Artemisia princeps extract (APE) against arachidonic acid (AA)+iron-induced oxidative stress on HepG2 cell. Methods : The effects of APE on cell viability has been assessed using MTT assay. And flow cytometric analysis was performed to estimate APE's effects on mitochondrial function. To investigate its underlying mechanism, related protein was analysed by using immunoblot analysis. Results : Treatment of APE increased relative cell viability, prevented a decline of B-cell lymphoma-extra large (Bcl-xL) and cleavage of poly(ADP-ribose) polymerase (PARP) and procaspase-3, and also protected mitochondrial membrane permeability (MMP) against oxidative stress induced by AA+iron. In addition, APE treatment increased phosphorylation of AMP-activated protein kinase (AMPK) exerts a cytoprotective effect. Conclusions : This results demonstrate that APE has an ability to activation of AMPK which protects cells from AA+iron-induced oxidative stress and restores MMP.