• 제목/요약/키워드: problem recognition

검색결과 1,874건 처리시간 0.027초

A Novel Method for Hand Posture Recognition Based on Depth Information Descriptor

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권2호
    • /
    • pp.763-774
    • /
    • 2015
  • Hand posture recognition has been a wide region of applications in Human Computer Interaction and Computer Vision for many years. The problem arises mainly due to the high dexterity of hand and self-occlusions created in the limited view of the camera or illumination variations. To remedy these problems, a hand posture recognition method using 3-D point cloud is proposed to explicitly utilize 3-D information from depth maps in this paper. Firstly, hand region is segmented by a set of depth threshold. Next, hand image normalization will be performed to ensure that the extracted feature descriptors are scale and rotation invariant. By robustly coding and pooling 3-D facets, the proposed descriptor can effectively represent the various hand postures. After that, SVM with Gaussian kernel function is used to address the issue of posture recognition. Experimental results based on posture dataset captured by Kinect sensor (from 1 to 10) demonstrate the effectiveness of the proposed approach and the average recognition rate of our method is over 96%.

초고해상도 기반 비대면 저해상도 영상의 얼굴 인식 시스템 (Untact Face Recognition System Based on Super-resolution in Low-Resolution Images)

  • 배현빈;권오설
    • 한국멀티미디어학회논문지
    • /
    • 제23권3호
    • /
    • pp.412-420
    • /
    • 2020
  • This paper proposes a performance-improving face recognition system based on a super resolution method for low-resolution images. The conventional face recognition algorithm has a rapidly decreased accuracy rate due to small image resolution by a distance. To solve the previously mentioned problem, this paper generates a super resolution images based o deep learning method. The proposed method improved feature information from low-resolution images using a super resolution method and also applied face recognition using a feature extraction and an classifier. In experiments, the proposed method improves the face recognition rate when compared to conventional methods.

A Survey of Face Recognition Techniques

  • Jafri, Rabia;Arabnia, Hamid R.
    • Journal of Information Processing Systems
    • /
    • 제5권2호
    • /
    • pp.41-68
    • /
    • 2009
  • Face recognition presents a challenging problem in the field of image analysis and computer vision, and as such has received a great deal of attention over the last few years because of its many applications in various domains. Face recognition techniques can be broadly divided into three categories based on the face data acquisition methodology: methods that operate on intensity images; those that deal with video sequences; and those that require other sensory data such as 3D information or infra-red imagery. In this paper, an overview of some of the well-known methods in each of these categories is provided and some of the benefits and drawbacks of the schemes mentioned therein are examined. Furthermore, a discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has also been provided. This paper also mentions some of the most recent algorithms developed for this purpose and attempts to give an idea of the state of the art of face recognition technology.

Hybrid Facial Representations for Emotion Recognition

  • Yun, Woo-Han;Kim, DoHyung;Park, Chankyu;Kim, Jaehong
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1021-1028
    • /
    • 2013
  • Automatic facial expression recognition is a widely studied problem in computer vision and human-robot interaction. There has been a range of studies for representing facial descriptors for facial expression recognition. Some prominent descriptors were presented in the first facial expression recognition and analysis challenge (FERA2011). In that competition, the Local Gabor Binary Pattern Histogram Sequence descriptor showed the most powerful description capability. In this paper, we introduce hybrid facial representations for facial expression recognition, which have more powerful description capability with lower dimensionality. Our descriptors consist of a block-based descriptor and a pixel-based descriptor. The block-based descriptor represents the micro-orientation and micro-geometric structure information. The pixel-based descriptor represents texture information. We validate our descriptors on two public databases, and the results show that our descriptors perform well with a relatively low dimensionality.

패턴인식 기술에 의한 칩형태 판별 (Chip type discrimination by pattern recognition technique)

  • 강종표;최만성;송지복
    • 한국정밀공학회지
    • /
    • 제5권4호
    • /
    • pp.32-38
    • /
    • 1988
  • Apaptive cintrol of machine tool is aimed to change cutting state satis- factorily without aid of a machine operator, if the cuting state is abnomal such as formation of tangled ribbon type chip, built-up edge and generation of chattering and so on. Among these the recognition of chip type is one of the most important since it has imlications relate to : 1. Safety of operator 2. Stoppage of work due to entanglment in tool and workpiece of chip 3. Problem of producted chip control In this paper the chip type is discriminatied by the pattern recognition technique. It is found that the power spectrum of cutting force for each chip type has it's own special pattern. Linear discriminant function for the recognition of the chip type is obtained by learning process. The discriminant function can be the basis of adaptive control for the rate of success of recognition by pattern recognition technique is at leasthigher than 83%.

  • PDF

향상된 JA 방식을 이용한 다 모델 기반의 잡음음성인식에 대한 연구 (A Study on the Noisy Speech Recognition Based on Multi-Model Structure Using an Improved Jacobian Adaptation)

  • 정용주
    • 음성과학
    • /
    • 제13권2호
    • /
    • pp.75-84
    • /
    • 2006
  • Various methods have been proposed to overcome the problem of speech recognition in the noisy conditions. Among them, the model compensation methods like the parallel model combination (PMC) and Jacobian adaptation (JA) have been found to perform efficiently. The JA is quite effective when we have hidden Markov models (HMMs) already trained in a similar condition as the target environment. In a previous work, we have proposed an improved method for the JA to make it more robust against the changing environments in recognition. In this paper, we further improved its performance by compensating the delta-mean vectors and covariance matrices of the HMM and investigated its feasibility in the multi-model structure for the noisy speech recognition. From the experimental results, we could find that the proposed improved the robustness of the JA and the multi-model approach could be a viable solution in the noisy speech recognition.

  • PDF

Real-time Object Recognition with Pose Initialization for Large-scale Standalone Mobile Augmented Reality

  • Lee, Suwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4098-4116
    • /
    • 2020
  • Mobile devices such as smartphones are very attractive targets for augmented reality (AR) services, but their limited resources make it difficult to increase the number of objects to be recognized. When the recognition process is scaled to a large number of objects, it typically requires significant computation time and memory. Therefore, most large-scale mobile AR systems rely on a server to outsource recognition process to a high-performance PC, but this limits the scenarios available in the AR services. As a part of realizing large-scale standalone mobile AR, this paper presents a solution to the problem of accuracy, memory, and speed for large-scale object recognition. To this end, we design our own basic feature and realize spatial locality, selective feature extraction, rough pose estimation, and selective feature matching. Experiments are performed to verify the appropriateness of the proposed method for realizing large-scale standalone mobile AR in terms of efficiency and accuracy.

깊이 영상을 이용한 지역 이진 패턴 기반의 얼굴인식 방법 (Face Recognition Method Based on Local Binary Pattern using Depth Images)

  • 권순각;김흥준;이동석
    • 한국산업정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.39-45
    • /
    • 2017
  • 기존의 색상기반 얼굴인식 방법은 조명변화에 민감하며, 위변조의 가능성이 있기 때문에 다양한 산업분야에 적용되기 어려운 문제가 있었다. 본 논문에서는 이러한 문제를 해결하기 위해 깊이 영상을 이용한 지역 이진 패턴(LBP) 기반의 얼굴인식 방법을 제안한다. 깊이 정보를 이용한 얼굴 검출 방법과 얼굴 인식을 위한 특징 추출 및 매칭 방법을 구현하고, 모의실험 결과를 바탕으로 제안된 방식의 인식 성능을 나타낸다.

Implementation of Non-Contact Gesture Recognition System Using Proximity-based Sensors

  • Lee, Kwangjae
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.106-111
    • /
    • 2020
  • In this paper, we propose the non-contact gesture recognition system and algorithm using proximity-based sensors. The system uses four IR receiving photodiode embedded on a single chip and an IR LED for small area. The goal of this paper is to use the proposed algorithm to solve the problem associated with bringing the four IR receivers close to each other and to implement a gesture sensor capable of recognizing eight directional gestures from a distance of 10cm and above. The proposed system was implemented on a FPGA board using Verilog HDL with Android host board. As a result of the implementation, a 2-D swipe gesture of fingers and palms of 3cm and 15cm width was recognized, and a recognition rate of more than 97% was achieved under various conditions. The proposed system is a low-power and non-contact HMI system that recognizes a simple but accurate motion. It can be used as an auxiliary interface to use simple functions such as calls, music, and games for portable devices using batteries.

A Proposal of Shuffle Graph Convolutional Network for Skeleton-based Action Recognition

  • Jang, Sungjun;Bae, Han Byeol;Lee, HeanSung;Lee, Sangyoun
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.314-322
    • /
    • 2021
  • Skeleton-based action recognition has attracted considerable attention in human action recognition. Recent methods for skeleton-based action recognition employ spatiotemporal graph convolutional networks (GCNs) and have remarkable performance. However, most of them have heavy computational complexity for robust action recognition. To solve this problem, we propose a shuffle graph convolutional network (SGCN) which is a lightweight graph convolutional network using pointwise group convolution rather than pointwise convolution to reduce computational cost. Our SGCN is composed of spatial and temporal GCN. The spatial shuffle GCN contains pointwise group convolution and part shuffle module which enhances local and global information between correlated joints. In addition, the temporal shuffle GCN contains depthwise convolution to maintain a large receptive field. Our model achieves comparable performance with lowest computational cost and exceeds the performance of baseline at 0.3% and 1.2% on NTU RGB+D and NTU RGB+D 120 datasets, respectively.