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Abstract 
 

Mobile devices such as smartphones are very attractive targets for augmented reality (AR) 
services, but their limited resources make it difficult to increase the number of objects to be 
recognized. When the recognition process is scaled to a large number of objects, it typically 
requires significant computation time and memory. Therefore, most large-scale mobile AR 
systems rely on a server to outsource recognition process to a high-performance PC, but this 
limits the scenarios available in the AR services. As a part of realizing large-scale standalone 
mobile AR, this paper presents a solution to the problem of accuracy, memory, and speed for 
large-scale object recognition. To this end, we design our own basic feature and realize spatial 
locality, selective feature extraction, rough pose estimation, and selective feature matching. 
Experiments are performed to verify the appropriateness of the proposed method for realizing 
large-scale standalone mobile AR in terms of efficiency and accuracy. 
 
 
Keywords: Real-time object recognition, mobile augmented reality, large-scale object 
recognition, standalone augmented reality, real-time feature matching 
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1. Introduction 

The popularization of mobile devices such as smartphones has increased the expectation for 
realizing augmented reality (AR) while simultaneously addressing resource constraints. 
Portability and accessibility, which are the most important advantages of mobile devices, 
enable various scenarios to be provided in the service dimension of AR applications for mobile 
devices. However, mobile devices have limited memory capacity and high computational 
complexity, which limits the number of objects that can be recognized. 

Generally, as the number of objects to be recognized increases, the required memory 
capacity and computation amount increase proportionally. One solution to this problem is to 
leverage the power of a server. Most of the operations and memory utilization can be 
performed on the server, and then, the result can be transmitted to the client mobile device. 
However, this method necessarily requires network communication, and the service quality 
depends on the state of the network connection of the user's mobile device, the server status of 
the service provider, and the number of simultaneous users at a given time. In addition, this 
approach interferes with immersion, which is one of the most important factors in AR. To 
establish a sense of immersion, when a user's point of view is focused on an object, the virtual 
content related to the object should immediately be augmented. To realize this, it is necessary 
to process every frame coming through the camera built in the user's mobile device, but it is 
practically impossible to transmit every frame to the server. In most cases, only the frame 
desired by the user is transmitted to the server, which requires the user to interact with the 
screen, for example, to interfere with the immersion. Therefore, it is very important to develop 
a large-scale mobile AR system in which the entire processing is performed on a mobile 
device without the assistance of a server. 

In this paper, we call such a system a large-scale standalone mobile AR system and propose 
efficient and robust recognition methods to realize it. The proposed methods include basic 
feature design, spatial locality, selective feature extraction, approximate pose estimation, and 
selective feature matching. Compared to the existing standalone mobile AR system designed 
for a single object, the number of recognition objects has been increased to 2,000 at the 
expense of only an 11% reduction in the recognition rate. In addition, it has been found that 
real-time recognition of 2,000 objects uses only 36 MB of memory on the mobile device. We 
have also shown that the proposed method is robust to a variety of environmental changes, 
including cluttered backgrounds. 

We organized the remainder of this paper as follows: Section 2 describes the AR systems 
related to this study and Section 3 proposes the basic features to be used in the learning and 
recognition phase, and Section 4 and 5 propose the learning and recognition phase respectively. 
Section 6 presents the experimental results for the proposed method, finally concludes in 
Chapter 7, and seeks future research directions. 

2. Related Work 
Most AR systems recognize a specific object based on a method of matching keypoints 

detected in different images. This is because the keypoint-based method is robust to changes 
such as scale, view point, and illumination or partial occlusion [1]. 
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One of the most important properties of a keypoint is repeatability. Repeatability refers to 
the property that is repeatedly detected at the same location even if an object is photographed 
under different viewpoints or different lighting. A representative keypoint detection method is 
using difference of Gaussian proposed by Lowe [2]. Lowe detected a keypoint with high 
repeatability for scale change by selecting local extrema as a keypoint in a difference of 
Gaussian pyramid approximating the Laplace of Gaussian pyramid. However, the method 
requires a large amount of computation, and as an alternative, a Feature from Accelerated 
Segment Test (FAST) [3] has been proposed. FAST detects keypoints by simply comparing 
the brightness values of surrounding pixels, and is being used as an alternative in applications 
where computation speed is important due to its high computation speed. 

There have been two main approaches to match the detected keypoints. The first approach is 
to create a high-dimensional vector in an affine-invariant manner for the local image patch 
surrounding the keypoint. Typical examples include Scale Invariant Feature Transform (SIFT) 
[2] and Speeded Up Robust Features [4], and these are called keypoint descriptors. Among 
them, SIFT is regarded as one of the best performing keypoint descriptors [5]. However, 
calculating these descriptors includes gradient calculation, scale selection, rotation correction, 
and intensity normalization processes that require large amounts of computation. Also, 
because the keypoint matching based on descriptors basically depends on the nearest neighbor 
search, even if the search space is reduced using an efficient data structure such as a tree 
structure or hashing, a large amount of computation is required. As an alternative, binary 
descriptors which compare the brightness values of surrounding pixels and describe the result 
in a bit string to generate features have been proposed. Typical examples include Binary 
Robust Independent Elementary Feature (BRIEF) [6], Oriented FAST and Rotated BRIEF 
(ORB) [7], Binary Robust Invariant Scalable Keypoints [8], and Fast Retina Keypoint [9]. 
They have many advantages in terms of speed, because the processes that required a large 
amount of computation are omitted or reduced. In addition, due to the nature of the binary 
feature, where one meaningful value is stored in a single bit within a feature, high-speed 
matching is possible using a Hamming distance, which enables fast calculation when 
keypoints are matched. 

The second approach for keypoint matching recasts the problem as a statistical 
classification problem. In short, the set of all possible appearances of each keypoint is 
considered a class, and is used to train a classifier. In the offline learning, for all extracted 
keypoints, various variants of the local image patch surrounding the keypoint are set as a class 
to learn the classifier. By shifting the computational burden from runtime to an offline training 
phase, this approach can achieve real-time keypoint matching. A representative method is 
Random Forest (RF) [10] proposed by Lepetit. RF is composed of several weak classifiers in a 
tree structure, and a tree learns the posterior probability distribution for keypoint matching. 
The internal node of the tree serves to divide the image space of the local image patch to reach 
the leaf node. In the leaf node, the posterior probability is calculated by using the class label of 
the local image patch. RF enabled fast and robust matching online at the expense of offline 
learning time and memory usage. After this, random ferns [11] has been proposed to simplify 
the structure and learn the class conditional probability, and studies have been conducted to 
reduce the unrealistic memory usage of the RF and random ferns [12,13]. 

The first standalone mobile AR system was developed by [14]. They proposed PhonySIFT, 
PhonyFerns, and PatchTracker, which have excellent performance in terms of computation, 
and showed that it is possible to recognize and track a single object on mobile devices. 

Efforts to increase the number of recognition targets were first made on a personal computer 
(PC). In [15], Cho et al. proposed the generic random forest (GRF) to implement an AR book 
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with up to 200 pages on a PC. The GRF maximizes the reusability of the existing RF so that 
both object recognition and keypoint matching can be performed simultaneously. However, 
the GRF requires a huge memory just like the RF. The amount of memory required to learn 
one page is approximately 10 MB; hence, they limited their research to a PC. 

To realize large-scale mobile AR, server–client-based systems have been proposed. The 
server performs object recognition on the image received from the client and transmits the 
recognition result back to the client. The recognition result includes the initial posture of the 
object, and the client tracks the object using the recognition result. In [16], Jung et al. 
implemented a server–client-based large-scale mobile AR system for 10,000 objects using 
vocabulary trees [17] as a recognizer. Because it is impossible to transmit all the real-time 
images from the client to the server, only the frame desired by the user is transmitted to the 
server. This requires additional interaction from the user and leads to the inhibition of 
immersion. 

3. Basic Feature Design 
We consider an approach based on keypoint matching to realize initial pose estimation 
simultaneously with object recognition. The approach facilitates the pose estimation of an 
object through the geometric relationship of the matched keypoints. In particular, considering 
the limited memory of mobile devices, we focus on a local feature-based method that includes 
keypoint detection [18] and keypoint description [5]. 

In this paper, a keypoint p is defined as a combination of four attributes, such as position 
attribute 𝐱𝐱, intensity attribute h, orientation attribute o, scale attribute s as follows: 

p = (𝐱𝐱, h, o, s), 𝐱𝐱 = (𝑥𝑥,𝑦𝑦) ∈ 𝑅𝑅2, h ∈ 𝑅𝑅, o ∈ [0, 360], s ∈ {0,⋯ ,𝑁𝑁s − 1}, (1) 

In general, keypoints are detected on the scale space so that the scale attribute can be 
assigned to the keypoints. The scale attribute is robust to scale changes when keypoints are 
described. Because detecting keypoints in the scale space results in high computational 
complexity, we approximate the scale space by building an image pyramid of 𝑁𝑁s levels, in 
which each level is scaled down by a factor of 𝑆𝑆 compared to the previous one. The choice of 
𝑁𝑁s and 𝑆𝑆 is a trade-off between robustness to scale changes of the object and the computation 
time. In our implementation, we use the experimentally chosen values of 𝑁𝑁s = 8 and 𝑆𝑆 = 1.2. 

We then detect keypoints using the FAST corner detector [3], which is known to be one of 
the fastest detectors at each level of the image pyramid. Because keypoints are detected on the 
image pyramid, the keypoints have a scale attribute s as well as a position attribute 𝐱𝐱. The 
Harris response [19] is then calculated for the keypoints, and an intensity attribute h  is 
assigned. When more than a predetermined number of keypoints are detected, the number of 
keypoints is limited by preferentially selecting keypoints with high h. Thereafter, to assign 
rotation-invariant properties to the keypoints, an orientation attribute o is assigned to each 
keypoint using the intensity centroid, as described in [20]. In the recognition step, the 
orientation attribute is assigned immediately before the keypoint is described as the feature 
vector. This is to maximize the speed gain by reducing unnecessary operations through 
selective feature extraction. Finally, a keypoint p is defined as a combination of four attributes 
as follows: 

To extract feature vectors from the detected keypoints, the SIFT descriptor [2], which is 
known to be robust to illumination and 3D viewpoint changes, is used. Owing to speed and 
memory considerations, we extract a 36-dimensional vector, instead of a 128-dimensional 
vector, by adopting 3 × 3 subregions with four gradient bins each. In addition, to maximize 
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memory efficiency, we represent each element via 8-bit values by quantizing the 4-byte 
floating-point value of each element to the [0, 255] range. From this, we have the additional 
advantage of being able to accelerate the distance computation between two features by 
calculating all combinations of (𝑎𝑎 − 𝑏𝑏)2 in advance. For example, using this descriptor, the 
squared L2 distance of two feature vectors can be calculated through only 36 addition 
operations. 

4. Offline Training Step 

For the given model images I = {𝐼𝐼0,⋯ , 𝐼𝐼𝑁𝑁𝐼𝐼−1} , feature vectors 𝐹𝐹𝑖𝑖 = {f𝑖𝑖0,⋯ , f𝑖𝑖
𝑁𝑁f−1}  are 

extracted from each model image 𝐼𝐼𝑖𝑖. In this process, keypoints 𝑃𝑃𝑖𝑖 = {p𝑖𝑖0,⋯ , p𝑖𝑖
𝑁𝑁p−1} are also 

detected (𝑁𝑁p = 𝑁𝑁f). The choice of 𝑁𝑁f is a trade-off between accuracy and efficiency. The 
larger the value of 𝑁𝑁f, the higher is the accuracy, but the computation time and the required 
memory capacity also increase. In our implementation, we use the experimentally chosen 
value of 𝑁𝑁f = 500. 

When feature vectors are extracted, it is recorded in a file so that it can be read and used in 
the recognition step. A total of 36 bytes are required to store one feature f. Therefore, 18 kB are 
required for one image and 18 MB for 1000 images, which is reasonable for mobile devices. 

The local feature-based method used in this research has another advantage in that training 
is very fast. It takes approximately 30s to train 1000 images on a mobile device. This speed is 
considerably faster than that achieved by classifier-based methods such as RF and random 
ferns [11], which take 1 min to train one image. In addition, the local feature-based method can 
easily train additional images because the training process is performed only for the additional 
images independently of the previously trained images. On the other hand, the GRF must 
retrain the classifier with the previously learned images to train additional images. This is 
greatly inconvenient and burdensome for the AR service provider. 

The total number of extracted features 𝑁𝑁f increases in proportion to the number of objects 
𝑁𝑁O (e.g., 𝑁𝑁F = 1M when 𝑁𝑁F = 500 and 𝑁𝑁O = 2000). 𝑁𝑁F represents the size of the space to be 
searched when the query feature performs matching in the recognition step, and increasing 𝑁𝑁F 
makes real-time matching impossible (e.g., over 10s when 𝑁𝑁F = 1M). For such a large search 
space, the approximate nearest neighbor (ANN) search is employed to realize real-time 
matching. The objective of using the ANN search is to trade off some amount of precision 
during the search for the sake of a substantial reduction in the query time (e.g., 100 times faster 
with 95% precision). 

For the ANN search, we use randomized kd-trees [21] and the best-bin-first [22] algorithm. 
In a randomized tree, the splitting dimension of a node is randomly chosen from among a set 
of the dimensions with highest variance and the split value is also randomly chosen using a 
point close to the median. Because of the randomness, trees are built to divide different feature 
spaces. Combining these trees creates partitions with overlapping feature spaces and mitigates 
quantization effects. A new data point falls to a leaf node of each tree, and the distances to the 
discriminating boundaries are recorded in a single priority queue for all trees. In the 
best-bin-first manner, the most promising branch from all trees is chosen and keep adding 
unseen nodes into the priority queue. An approximate answer can be returned without 
significantly increasing the search time by stopping further search after traversing a certain 
number of the nearest bins. 

The randomized kd-trees consist of 𝑁𝑁𝑇𝑇 trees that are constructed differently to complement 
each other. While traversing trees, the best-bin-first algorithm searches the space in the order 
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of the bins closest to the query location and stops the search after checking the first 𝑁𝑁𝑉𝑉 nearest 
neighbor candidates. In our implementation, we use the experimentally chosen values of 𝑁𝑁𝑇𝑇 = 
4 and 𝑁𝑁𝑉𝑉 = 32. 
 

 
Fig. 1. (a) In real word images, a number of keypoints are detected in parts other than the object of 

interest, such as the background; (b) Subregion strategy based on spatial locality; (c) Uniformly selected 
keypoints. 

5. Online Recognition Step 
Recognition includes the process of initial pose calculation together with the identification of 
the object in the image captured from the camera. If the object is recognized, it is possible to 
track the object from the subsequent image using the calculated initial pose. The tracking 
performance is irrelevant to the scale of the number of objects because the tracking is 
performed on a specific object. On the other hand, the recognition performance is very 
sensitive to the scale of the number of objects. The following subsections describe schemes for 
solving the accuracy and speed problems that occur in the recognition step when the scale of 
the number of objects becomes large. 
5.1 Spatial Locality 
In the recognition step, because no information is available on the location of the object of 
interest in the image, keypoints must be detected in the entire area of the image. Accordingly, 
a number of keypoints are detected in parts other than the object of interest, such as the 
background. Fig. 1 (a) shows the location of the object of interest in the image and the detected 
keypoints. The indiscriminate use of such detected keypoints leads to a decrease in recognition 
accuracy. To resolve the problem, we introduce spatial locality, which is the assumption that 
an object projected on to an image is spatially connected. Based on the spatial locality, we first 
divide the query image 𝐼𝐼𝑞𝑞 into a m × n gird of 𝑁𝑁r subregions 𝑅𝑅 =  {r0,⋯ , r𝑁𝑁r−1}, as shown in 
Fig. 1 (b). We then detect keypoints 𝑃𝑃𝑞𝑞 = {p𝑞𝑞0 ,⋯ , p𝑞𝑞

𝑁𝑁p−1} from 𝐼𝐼𝑞𝑞 and assign the membership 
information of the subregions as an additional attribute to the keypoints. The spatial locality 
handles the cluttered background problem, while accelerating recognition through selective 
feature extraction in the following process. 
5.2 Candidate Estimation 
To accelerate recognition, we first estimate the candidate at a high speed using only a small 
number of features. For this, keypoints 𝑃𝑃𝑞𝑞′ = {p′𝑞𝑞

0 ,⋯ , p′𝑞𝑞
𝑁𝑁p′−1} are selected in the order of the 

highest h among 𝑃𝑃𝑞𝑞 (𝑃𝑃𝑞𝑞′ ⊆ 𝑃𝑃𝑞𝑞and 𝑁𝑁p′ ≤ 𝑁𝑁p). When selecting keypoints, 𝑁𝑁p′/𝑁𝑁r keypoints are 
allocated to be selected for each subregion so that the keypoints 𝑃𝑃𝑞𝑞′ are uniformly distributed. 
Fig. 1 (c) shows that the same number of keypoints are selected per subregion when 𝑁𝑁p = 200 
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and 𝑁𝑁p′  = 40. We then extract feature vectors 𝐹𝐹𝑞𝑞′ = {f′𝑞𝑞
0 ,⋯ , f′𝑞𝑞

𝑁𝑁f′−1} to be used for candidate 
estimation from 𝑃𝑃𝑞𝑞′. Because the unselected keypoints are not to be extracted as feature vectors, 
the orientation attribute is not assigned. The closer 𝑁𝑁p′  is to 𝑁𝑁p, the higher is the accuracy but 
so is the computation time. In our implementation, we use the experimentally chosen value of 
𝑁𝑁p′  = 100, which compromises between accuracy and computation time. 

The extracted feature vectors 𝐹𝐹𝑞𝑞′ perform feature matching to the 𝑁𝑁F feature vectors of the 
feature space built from the model images I. The matching is speeded up by the ANN searcher 
trained in the offline training step. For a feature vector f𝑞𝑞

′ , the ANN searcher returns the index 
i of the matched feature vector with the distance 𝑑𝑑 as follows: 

i = (𝑖𝑖, 𝑗𝑗) = index �ANN�f𝑞𝑞′ �� , 𝑖𝑖 = 0,⋯ ,𝑁𝑁𝑂𝑂 − 1, 𝑗𝑗 = 0,⋯ ,𝑁𝑁f − 1 (2) 

𝑑𝑑 = distance �f𝑞𝑞′ , ANN�f𝑞𝑞′ �� . (3) 

Based on the matching result, the score of the support as a candidate for each object is 
calculated as follows: 

Scoref𝑞𝑞′ (𝑂𝑂𝑖𝑖) = �
exp −

𝑑𝑑2

2𝜎𝜎2
          if   ANN�f𝑞𝑞′�  ∈  𝐹𝐹𝑖𝑖 

0               otherwise

, 𝑖𝑖 = 0,⋯ ,𝑁𝑁𝑂𝑂 − 1. (4) 

To take advantage of the spatial locality, the score obtained in (4) is accumulated for each 
subregion as follows: 

Scorer(𝑂𝑂𝑖𝑖) = � Scoref𝑞𝑞′ (𝑂𝑂𝑖𝑖)
f𝑞𝑞′  ∈ r

, 𝑖𝑖 = 0,⋯ ,𝑁𝑁𝑂𝑂 − 1. (5) 

For a subregion r, the model image having the highest score according to (5) is estimated as 
a candidate of the subregion as follows: 

Candidate(r) = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑂𝑂𝑖𝑖

 Scorer(𝑂𝑂𝑖𝑖) , 𝑖𝑖 = 0,⋯ ,𝑁𝑁𝑂𝑂 − 1. (6) 

After estimating the candidates for subregions, adjacent subregions having the same 
candidate are connected and called locally connected regions (LCRs). As shown in Fig. 2, an 
LCR roughly segments the object region. Because there may be several LCRs that estimate 
different candidates, the candidate estimated by the LCR having the highest score is 
determined as the final candidate 𝑂𝑂𝑐𝑐 of 𝐼𝐼𝑞𝑞 as follows: 

𝑂𝑂𝑐𝑐 = Candidate�𝐼𝐼𝑞𝑞� = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝑂𝑂𝑖𝑖

 Score𝐼𝐼𝑞𝑞(𝑂𝑂𝑖𝑖) , 𝑖𝑖 = 0,⋯ ,𝑁𝑁𝑂𝑂 − 1, (7) 

where Score𝐼𝐼𝑞𝑞(𝑂𝑂𝑖𝑖) = ∑ Scorer(𝑂𝑂𝑖𝑖)r ∈ 𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑖𝑖
, 𝑖𝑖 = 0,⋯ ,𝑁𝑁𝑂𝑂 − 1. (8) 
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Fig. 2. (a) Estimation of regional candidate; (b) Locally connected regions. 

 
5.3 Rough Pose Estimation 
A single feature correspondence contains geometric transformations generated by the 
attributes of the corresponding keypoints. These transformations includes translations ∆𝑥𝑥 and 
∆𝑦𝑦, rotation ∆o, and scale ∆s, as shown in Fig. 3. By using the transformations to estimate the 
rough pose of the candidate, it is possible to speed up the verification process of the 
subsequent candidate. For this, we introduce the generalized Hough transform (GHT) [23], 
which generalizes the Hough transform to detect arbitrary shapes. The GHT allows each 
correspondence to vote for the bins of the corresponding transformation and accumulates these 
votes in a binned voting space, as shown in Fig. 4 [24]. We use the transform combination 
corresponding to the most-voted bin as a rough pose. 
 

 
Fig. 3. A geometric transformation of a single feature correspondence. 

 

 
Fig. 4. An example of three-dimensional GHT voting space [24]. 
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Fig. 5. Estimation of regional candidate and rough pose. 

 
The voting is performed during the estimation process of the previous candidate. All 

correspondences vote in the GHT voting space of the candidates they support when the score 
for the candidate is calculated. The process of accumulating the results for each subregion and 
forming the LCR is performed simultaneously with the candidate estimation. Therefore, 
subregions that estimate the same candidate as the same rough pose form the LCR. Fig. 5 
illustrates this process. In our research, we define a four-dimensional GHT voting space for ∆𝑥𝑥, 
∆𝑦𝑦, ∆o, and ∆s and set the range of each transformation to 40, 40, 30, and 1, respectively. We 
use a dynamic hash map for implementation because the voting space is very sparse in 
practice. 
 

 
Fig. 6. Locally connected regional keypoints. 
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5.4 Candidate Verification and Pose Initialization 
A verification process is performed to determine whether to recognize or reject the final 
candidate 𝑂𝑂𝑐𝑐 while calculating the initial pose. Because 𝐿𝐿𝐿𝐿𝑅𝑅𝑂𝑂𝑐𝑐 roughly segments 𝑂𝑂𝑐𝑐, we first 
select locally connected regional keypoints 𝑃𝑃𝑞𝑞,𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑐𝑐 , which belong to 𝐿𝐿𝐿𝐿𝑅𝑅𝑂𝑂𝑐𝑐  among 𝑃𝑃𝑞𝑞, as 
shown in Fig. 6. We then extract locally connected regional feature vectors 𝐹𝐹𝑞𝑞,𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑐𝑐  from 
𝑃𝑃𝑞𝑞,𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑐𝑐 . 
 

 
Fig. 7. An example of bidirectional matching. 

 
The 3D pose calculation of 𝑂𝑂𝑐𝑐 is based on feature matching between 𝐹𝐹𝑞𝑞,𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑐𝑐  and 𝐹𝐹𝑐𝑐, where 

𝐹𝐹𝑐𝑐 is the feature vector extracted from 𝐼𝐼𝑐𝑐, which is model image of 𝑂𝑂𝑐𝑐. Because 𝐿𝐿𝐿𝐿𝑅𝑅𝑂𝑂𝑐𝑐 still 
contains features extracted from the background, bidirectional matching is performed as a 
means of minimizing false matching, as shown in Fig. 7. For the distance metric, we use the 
squared L2 distance, which facilitates the acceleration of computation because of the property 
of our basic feature, as mentioned in Section 3. The matched pairs establish matching 
correspondences. 
 

 
Fig. 8. Accelerating bidirectional matching using the estimated rough pose. 
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The process is further accelerated using the estimated rough pose. Because a feature pair 
that does not satisfy the estimated rough pose is not likely to be a matching correspondence, 
many operations can be reduced. For this reduction, a transformation defined by the GHT is 
obtained for all the pairs between 𝐹𝐹𝑞𝑞,𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑐𝑐  and 𝐹𝐹𝑐𝑐, and bidirectional matching is performed 
only between the pairs having the same transform as the estimated rough pose. As shown in 
Fig. 8, a majority of the features are excluded for feature matching in both the directions. If no 
feature exists that has the same transformation as the estimated rough pose, the feature vector 
extraction process is also skipped. 
 

 
Fig. 9. An example of 2D transformation by using a homography. 

 
Bidirectional matching minimizes falsely matched pairs called outliers but does not 

completely eliminate them. They must be removed because they obscure the judgment of the 
final recognition and cause errors in the calculation of the initial pose. For outlier removal, we 
use progressive sample consensus (PROSAC) [25], which is one of the random sample 
concensus (RANSAC) [26]-based algorithms. These algorithms are best suited for the purpose 
of this research because they perform not only outlier removal but also homography 
computation, which should be performed before the initial pose calculation. A homography is 
the most general model that can explain two-dimensional image transformation. Fig. 9 shows 
the area where the model image is transformed into a query image by using a homography. 
Because PROSAC is used, matching correspondences consisting of only inliers and the 
homography calculated from them are returned. 

 

 
Fig. 10. Three examples of invalid homographies. 

 
Finally, matching correspondences and the homography are evaluated to determine the final 

recognition. The candidate is recognized only when the number of inliers is higher than a 
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certain threshold and the homography is valid. Examples of invalid homographies include 
reflected, twisted, and concave shapes, as shown in Fig. 10. If it is judged that the candidate is 
recognized, the initial six-degrees-of-freedom pose of the recognized object is obtained by 
homography decomposition. 

 
Table 1. Each set of Vienna dataset contains a different number of frames and different environmental 

changes. 
Set Environmental changes # of frames 

Simple Smooth camera path 602 
Occlusion Partial occlusion of user interaction 1134 

Tilt Strong tilt 782 
Fast movement Strong blur caused by fast camera movement 928 
Loss of target Pointing camera away from and back to target 601 

6. Experimental Results 
6.1 Environments 
We evaluate the performance of the proposed method using the Vienna dataset [14], which 
consists of five sets of images obtained from a single satellite image; each set contains a 
different number of frames and different environmental changes as shown in Fig. 11 [14] and 
Table 1. The dataset contains a variety of environmental changes but excludes cluttered 
backgrounds, which are one of the most important environmental changes commonly 
encountered in AR scenarios. Thus, we create a Clutter set consisting of 500 frames with 
several textured cards placed around the target image, as shown in Fig. 12. We call the dataset 
containing the Clutter set as the Vienna+ dataset to distinguish it from the existing Vienna 
dataset. In addition, we add images of the UKBench dataset [17] to act as distractors when 
recognizing the target image, as shown in Fig. 13. In the following discussion, the number of 
distractors represents the number of objects to be recognized. 
 

 
Fig. 11. Sample frames from each set of Vienna dataset [14]. 
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Fig. 12. Clutter set created to consider cluttered backgrounds. 

 
The performance is evaluated in terms of efficiency and accuracy. Efficiency measures the 

memory usage and the average time required to process one frame. Accuracy refers to the 
success rate of recognition and measures the ratio of the number of frames that are 
successfully recognized to the total number of frames. A recognition is considered to be 
successful if a valid homography is calculated with more than 15 inliers for the final candidate. 
All the experiments are performed on a Samsung Galaxy S5, a smartphone launched in 2014. 
 

 
Fig. 13. Target image with distractor images. 

 
6.2 Feature Comparison 
To compare the performance of the feature itself, the recognition performance is evaluated 
using only the target image on the Vienna dataset. Our proposed feature is compared with the 
RF (a representative of a statistical classifier), ORB (a representative of binary features), and 
PhonySIFT (a representative of the mobile version of SIFT). 
 

Table 2. Accuracy comparison of the features. 

 Simple Occlusion Tilt Fast 
movement 

Loss of 
target Total 

Random 
Forest 

0.80 
(486/602) 

0.77 
(874/1134) 

0.45 
(355/782) 

0.60 
(565/928) 

0.55 
(336/601) 

0.64 
(2616/4047) 

ORB 0.93 
(565/602) 

0.53 
(608/1134) 

0.37 
(296/782) 

0.74 
(695/928) 

0.54 
(328/601) 

0.61 
(2492/4047) 

PhonySIFT 0.96 
(581/602) 

0.82 
(936/1134) 

0.46 
(363/782) 

0.51 
(482/928) 

0.53 
(323/601) 

0.66 
(2685/4047) 

QPhonySIFT 0.94 
(567/602) 

0.75 
(857/1134) 

0.44 
(349/782) 

0.42 
(397/928) 

0.52 
(317/601) 

0.61 
(2487/4047) 

 
Table 2 lists the accuracy of the features for each set. The RF shows uniform performance. 

ORB is robust to blur (fast movement) but is vulnerable to tilt and occlusion, which are 
characteristics of binary features. On the other hand, PhonySIFT and proposed the feature are 
vulnerable to blur but robust to tilt and occlusion. Because of these results, we design the basic 
feature based on SIFT rather than binary features. In AR scenarios, image blur occurs more 
frequently in the tracking process where camera movement is fast, and occlusion and 
viewpoint changes occur more frequently in the recognition process. Overall, the proposed 
feature shows a recognition rate that is 5% lower than that of PhonySIFT. This lower rate is the 
result of the loss of information caused by quantization, which is performed to maximize 
efficiency. 
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Table 3. Computation time and memory usage comparison of the features. 

 Computation time for each operation (ms) Memory(kB) Detection Description Matching PROSAC Total 
Random Forest 5.1 - 11.2 2.9 19.2 10240 

ORB 5.1 5.6 4.1 3.0 17.8 16 
PhonySIFT 5.1 6.6 5.6 2.9 20.2 72 

QPhonySIFT 4.9 6.6 2.5 3.0 17.0 18 
 
Table 3 lists the efficiency of the features. Keypoint detection and PROSAC are used in all 

the features in the same manner, and keypoint description is omitted for the RF. All the 
features guarantee real-time performance, but ORB and the proposed feature have better 
performance in terms of computation time. The proposed feature saves approximately 3.1 ms 
of computation time compared to PhonySIFT because of the speed gain from the matching 
process. The RF requires more than 10 MB of memory to train one object. The other three 
features are excellent in terms of memory usage, but ORB and the proposed feature are the 
best. The memory efficiency of the proposed feature is four times that of PhonySIFT. In terms 
of the overall efficiency, ORB and the proposed feature are the best choices. 

 
Table 4. Results of the baseline method according to the number of distractors. 

 # of distractors 
50 100 200 500 1000 2000 

Success rate of recognition 0.58 0.53 0.48 0.39 0.29 0.21 
# of inliers at recognition success 34.9 31.7 28.0 24.7 21.9 18.6 

Success rate of candidate 0.73 0.72 0.72 0.71 0.69 0.66 
Computation time (ms) 28.5 31.3 40.4 45.8 51.7 61.5 

 
6.3 Baseline Method 
To show the superiority of the proposed method, the baseline method is designed and the 
results are presented. The online recognition steps of the baseline method are as follows: 

 
• Extract features from the query image (no consideration of spatial locality). 
• Match the features to the feature space built from model images using the ANN searcher. 
• Estimate the object corresponding to the most matching model image as a candidate. 
• Verify the candidate by running PROSAC with only the results of the ANN searcher. 
 

 
Fig. 14. Success rate of candidate estimation according to the number of distractors on the Clutter set. 
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Table 4 shows the results of the baseline method according to the number of distractors. As 
the number of distractors increases, the average number of inliers decreases at the same rate at 
which the recognition rate decreases. On the other hand, the success rate of a candidate is not 
greatly influenced by the number of distractors, and good results are obtained. This indicates 
that even though the number of distractors increases, the number of features matching the 
feature extracted from the target image is the greatest, although the number is significantly 
reduced. This implies that more sophisticated matching is needed after the candidate 
estimation. The computation time is also greatly influenced by the number of distractors. This 
is attributable to the overhead that occurs in the tree search because the depth of the tree 
constituting the ANN searcher becomes larger as the feature space becomes larger. 

 

 
Fig. 15. Simultaneously recognizing multiple objects in an image. 

 
6.4 Effect of Spatial Locality 
To investigate the effect of spatial locality, we compare the baseline method with and without 
applying spatial locality to the Clutter set. Fig. 14 shows the success rate of candidate 
estimation according to the number of distractors on the Clutter set. When spatial locality is 
not applied, it cannot overcome the cluttered background and shows severe performance 
degradation in candidate estimation. This is because many features extracted from the 
background influences the candidate estimation. On the other hand, when spatial locality is 
applied, it maintains high performance in the cluttered background. 

The proposed spatial locality also opens the possibility of simultaneously recognizing 
multiple objects in an image. As shown in Fig. 15, two or more LCRs can exist in a query 
image because the candidate is estimated for each subregion based on spatial locality. If the 
candidate is verified independently for each LCR, we can recognize multiple objects 
simultaneously. 
6.5 Scalability of Proposed Method 
By performing experiments on the scalability of different aspects of the proposed method, 
including spatial locality, selective feature extraction, rough pose estimation, and selective 
feature matching, we verify the appropriateness of the proposed method for realizing 
large-scale standalone mobile AR. 

Fig. 16 shows the accuracy of the proposed method according to the number of distractors. 
In contrast to the baseline method, which shows a degraded recognition rate as the number of 
distractors increases, the proposed method shows a stable recognition rate. The recognition 
rate of the proposed method decreases by only 5% as the number of distractors increases from 
50 to 2,000. Compared to [14] (Table 3, PhonySIFT), which considers only a single object, it 
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is an encouraging achievement to extend the number of recognition objects to 2,000 at the 
expense of only an 11% reduction in the recognition rate. 

 

 
Fig. 16. Accuracy comparison between the proposed method and the baseline method according to the 

number of distractors. 
 
Fig. 17 shows the efficiency of the proposed method according to the number of distractors. 

In the case of the computation time, the results of the baseline method are also visualized for 
comparison. Memory usage increases in proportion to the number of distractors, but memory 
consumption is only 36 MB when the number of distractors is 2,000 because of the efficient 
memory usage of the proposed basic feature. This is reasonable even considering mobile 
devices. As the number of distractors increases, the computation time is affected by the 
overhead caused by the ANN searcher, but the proposed method shows much improvement 
compared to the baseline method. This is because of the use of efficient techniques such as 
selective feature extraction and selective feature matching based on spatial locality. As the 
number of distractors increases from 50 to 2,000, additional operations that consume 8.4ms 
are required, but it is confirmed that the real-time performance is still maintained. 

 

 
Fig. 17. Computation time comparison between the proposed method and the baseline method and 

memory usage of the proposed method according to the number of distractors. 
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7. Conclusion 
In this paper, we have proposed a method for achieving real-time recognition with pose 
initialization to realize large-scale standalone mobile AR. The characteristics of the proposed 
method include basic feature design, spatial locality, selective feature extraction, rough pose 
estimation, and selective feature matching. Compared to the existing standalone mobile AR 
system, which recognizes only one object, we could extend the number of recognition objects 
by 2,000 at the expense of only an 11% reduction in the recognition rate. In addition, we have 
shown that the real-time recognition of 2,000 objects uses only 36 MB of memory on mobile 
devices. We have also shown that the proposed method is robust to various environmental 
changes including cluttered environments. 

The proposed method provides a solution to mobile AR services that target a large number 
of objects, alleviates cost problems encountered in existing server–client-based systems, and 
maximizes the immersion of AR services. It is expected to be used not only in the 
diversification of scenarios provided by AR services but also in computer vision applications 
that recognize many specific objects in real time. 

Experiments have shown that real-time operation can be performed on 2,000 objects, but 
this does not completely solve the scalability problem. This is attributable to the overhead 
incurred in the tree search because the depth of the randomized kd-trees constructed for the 
ANN searcher becomes larger as the feature space becomes larger. To solve this problem, 
additional research should be conducted to maximize the efficiency of the ANN searcher. In 
the proposed method, feature extraction in the training step is performed independently for 
each model image. If additional research is conducted toward extracting features of model 
images while considering the distribution of the feature space, it is expected that the accuracy 
can be further improved by reducing false matching occurring in the recognition step. 
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