• Title/Summary/Keyword: problem analysis

Search Result 16,359, Processing Time 0.039 seconds

A Study on the Vibration Analysis of a Power Transmission by Substructure Synthesis Method (부분구조합성에 의한 동력전달기의 진동해석에 관한 연구)

  • 박석주;박성현;박영철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.161-166
    • /
    • 2001
  • This study intends to reduce the weight of structure without changing the dynamic characteristics. At first, the Vibration analyses by the Substructure Synthesis Method and FEM using the ANSYS are performed for the engine speed converter to confirm the reliability of the analyzing tools. Weight minimization is performed by the Sensitivity Analysis and the Optimum Structural Modification. To decrease the converter weight ideally, the parts with low sensitivity are to be cut mainly, and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with high sensitivity. As the unique mathematical solution for the homogeneous problem( i.e. 0 object function problem) does not exist, the converter is redesigned with much thinner initial thickness. The goal of this study is to recover the dynamic characteristics of redesigned structure to those of the original one. To say in the other words, the modified structure has the same dynamic characteristics and the more lighter weight to compare with the original one. In this analysis, the modification was performed with the redesigned initial thickness of 60 mm and 70 mm. And the numbers of the interesting natural frequencies are 1, 2, 4 respectively. Consequently 27% of weight reduction effects were earned.

  • PDF

Conflict Analysis of the Nanjing Yuhuan and A.O Smith Joint Venture Case

  • Yu, Yunxia;Wang, Ying
    • Asian Journal of Business Environment
    • /
    • v.8 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • Purpose -This paper is to study the process of the negative effects of Sino-foreign joint ventures, hoping to find out an effective path in which local enterprises can avoid the risks in the utilization of foreign capital, and ultimately achieve independent innovation. Research design, data, and methodology -The outflow of assets, the loss of local brands and the "technology hollowing-out" problem brought by joint ventures is becoming more and more serious. Based on conflict analysis graph model, this paper takes Yuhuan joint venture as an example to identify the conflict problem in Sino-foreign joint ventures. Results -The results of the stability analysis show that establishing joint venture cannot really realize the introduction of technology because the technology is fully controlled by the foreign part. So when introducing foreign capital, local enterprises should participate in R&D and master the initiative. Conclusions - Local enterprises should pay attention to patent containment and technology blockade of multinationals. Domestic enterprises should try to protect state-owned assets and local brands in Sino-foreign joint ventures. Independent innovation is the most effective strategy for the development of enterprises in China.

THEORETICAL ANALYSIS FOR STUDYING THE FRETTING WEAR PROBLEM OF STEAM GENERATOR TUBES IN A NUCLEAR POWER PLANT

  • LEE CROON YEOL;CHAI YOUNG SUCK;BAE JOON WOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.201-206
    • /
    • 2005
  • Fretting, which is a special type of wear, is defined as small amplitude relative motion along the contacting interface between two materials. The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element model that can simulate fretting wear on the secondary side of the steam generator was developed and used for a quantitative investigation of the fretting wear phenomenon. Finite element modeling of elastic contact wear problems was performed to demonstrate the feasibility of applying the finite element method to fretting wear problems. The elastic beam problem, with existing solutions, is treated as a numerical example. By introducing a control parameter s, which scaled up the wear constant and scaled down the cycle numbers, the algorithm was shown to greatly reduce the time required for the analysis. The work rate model was adopted in the wear model. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate cross tubes contacting at right angles. The wear constant of Inconel 690 in the work rate model was taken as $K=26.7{\times}10^{-15}\;Pa^{-1}$ from experimental data obtained using a fretting wear test rig with a piezoelectric actuator. The analyses revealed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.

A Study on the Influence of the Punch Stroke of Bead on the Draw-bead process by using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드 펀치 행정거리가 드로우비드 공정에 미치는 영향에 관한 연구)

  • 정동원
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2001
  • The bead is used to provide properly restraining force in the sheet metal forming process. This bead process includes bending and geometrical non-linearity, and affects the state of binderwrap. Therefore, the analysis of bead process is very important to obtain the desired formability. In this paper, the research about the influence of the punch stroke of bead on the draw-bead process was conducted. Results from the analysis will give useful information to the effective tool design of blank forming process. To analyze the bead process, and elasto-plastic finite element formulation is constructed from the equilibrium equation and the considered boundary conditions involved a proper contact condition. The static-explicit finite element method as a numerical method for the analysis was applied to the analysis program code. It was found that this method could solve too much computation time and convergence problem owing to high non-linearity of bead forming process.

  • PDF

A Novel Finite Element Technique for analyzing Saturated Rotating Machines Using the Domain Decomposition and TLM Method (영역분할법 (domain decomposition)과 TLM법을 이용한 회전기의 비선형 유한 요소 해석)

  • Joo, Hyun-Woo;Im, Chang-Hwan;Lee, Chang-Hwan;Kim, Hong-Kyu;Jung, Hyn-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.623-625
    • /
    • 2000
  • For the finite element analysis of highly saturated rotating machines involving rotation of a rotor such as dynamic analysis. cogging torque analysis and etc, so much time is needed because a new system matrix equation should be solved for each iteration and time step. It is proved in this paper that. in linear systems. the computational time can be greatly reduced by using the domain decomposition method (DDM). In nonlinear systems. however. this advantage vanishes because the stiffness matrix changes at each iteration especially when using the Newton-Raphson (NR) method. The transmission line modeling (TLM) method resolves this problem because in TLM method the stiffness matrix does not change throughout the entire analysis. In this paper, a new technique for FEA of rotating machines including rotation of rotor and non-linearity is proposed. This method is applied to a test problem. and compared with the conventional method.

  • PDF

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.

Parametric study of laterally loaded pile groups using simplified F.E. models

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The problem of laterally loaded piles is particularly a complex soil-structure interaction problem. The flexural stresses developed due to the combined action of axial load and bending moment must be evaluated in a realistic and rational manner for safe and economical design of pile foundation. The paper reports the finite element analysis of pile groups. For this purpose simplified models along the lines similar to that suggested by Desai et al. (1981) are used for idealizing various elements of the foundation system. The pile is idealized one dimensional beam element, pile cap as two dimensional plate element and the soil as independent closely spaced linearly elastic springs. The analysis takes into consideration the effect of interaction between pile cap and soil underlying it. The pile group is considered to have been embedded in cohesive soil. The parametric study is carried out to examine the effect of pile spacing, pile diameter, number of piles and arrangement of pile on the responses of pile group. The responses considered include the displacement at top of pile group and bending moment in piles. The results obtained using the simplified approach of the F.E. analysis are further compared with the results of the complete 3-D F.E. analysis published earlier and fair agreement is observed in the either result.

Dynamic Stress Analysis of joint by Practical Dynamic Load History (실하중 이력에 의한 조인트의 동적강도해석)

  • ;;;Akira Simamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.118-123
    • /
    • 2001
  • Most structures of automobile are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic farces for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic load determination is developed by the combination of the principal stresses of F.E. analysis and experiment. Inverse problem and least square pseudo inverse matrix are adopted to obtain an inverse matrix of analyzed stresses matrix. Pseudo-Practical dynamic load was calculated for Lab. Test of sub-structure. GUI program(PLODAS) was developed for whole of above procedure. This proposed method could be extended to any geometric shape of structure.

  • PDF

A Study on the Growth Characteristics of Multi-layer Planted Trees through Growth Analysis - With a Focus on Seoul Forest Park -

  • Kim, Han Soo;Ban, Soo Hong
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.279-291
    • /
    • 2015
  • This study analyzed the growth characteristics of multi-layer planted trees through their growth analysis and attempted to present a management strategy. The subject of research is the Citizen's Forest Area of Seoul Forest Park located in Seoul City. Field surveys were conducted three times over eight years from 2005 when the Seoul Forest Park was created through 2013. Labels were attached to all trees in the target area, and their species, height and DBH were investigated. To identify the growth differences by trees in each area, a detailed tree location map was drawn up for use in the analysis. To check soil health, soil organic matter, soil pH and soil microbial activities were analyzed. It turned out that the growth of the multi-layer planted trees in the target area of research was higher than that of the trees in existing urban parks, and that it was similar to that of trees in natural forests. Through a field survey in the area with a remarkably low growth, high-density planting problem, soil was found to have excess-moisture and there was the problem of Pueraria lobata covering. As a result of the analysis of the soil, it was found that its organic content in the soil was lower; soil pH was higher; and microbial activities in the soil were lower when compared to that of natural forests.

Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.127-143
    • /
    • 2012
  • The present paper deals with the nonlinear analysis of the functionally graded piezoelectric (FGP) annular plate with two smart layers as sensor and actuator. The normal pressure is applied on the plate. The geometric nonlinearity is considered in the strain-displacement equations based on Von-Karman assumption. The problem is symmetric due to symmetric loading, boundary conditions and material properties. The radial and transverse displacements are supposed as two dominant components of displacement. The constitutive equations are derived for two sections of the plate, individually. Total energy of the system is evaluated for elastic solid and piezoelectric sections in terms of two components of displacement and electric potential. The response of the system can be obtained using minimization of the energy of system with respect to amplitude of displacements and electric potential. The distribution of all material properties is considered as power function along the thickness direction. Displacement-load and electric potential-load curves verify the nonlinearity nature of the problem. The response of the linear analysis is investigated and compared with those results obtained using the nonlinear analysis. This comparison justifies the necessity of a nonlinear analysis. The distribution of the displacements and electric potential in terms of non homogenous index indicates that these curves converge for small value of piezoelectric thickness with respect to elastic solid thickness.