• 제목/요약/키워드: probiotic feed

검색결과 154건 처리시간 0.025초

Effects of Dietary Bacillus-based Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Finishing Pigs

  • Chen, Y.J.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Son, K.S.;Kim, H.J.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권4호
    • /
    • pp.587-592
    • /
    • 2006
  • This study was conducted to evaluate the effects of supplementation with bacillus-based probiotic (Bacillus subtilis, $1.0{\times}10^7CFU/g$; Bacillus coagulans, $2.0{\times}10^6CFU/g$ and Lactobacillus acidophilus, $5.0{\times}10^6CFU/g$) on finishing pigs growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content and to determine the optimal addition level of this probiotic preparation. A total of forty eight pigs with an initial body weight (BW) of $90.60{\pm}2.94kg$ were allotted to three dietary treatments (four pigs per pen with four pens per treatment) according to a randomized complete block design. Dietary treatment included: 1) CON (basal diet); 2) BP1 (basal diet+bacillus-based probiotic 0.1%) and 3) BP2 (basal diet+bacillus-based probiotic 0.2%). The experiment lasted 6 weeks. Through the entire experimental period, ADG was improved by 11% (p<0.05) in pigs fed diets supplemented with 0.2% bacillus-based probiotic compared to pigs fed the basal diet. ADFI and gain/feed were not affected by the treatments (p>0.05). Supplementation of bacillus-based probiotic did not affect either DM and N digestibilities or blood characteristics (p>0.05) of pigs. Fecal ammonia nitrogen ($NH_3$-N) measured at the end of experiment was reduced (p<0.05) when pigs were fed the diet with 0.2% bacillus-based probiotic. Fecal butyric acid concentration also decreased significantly (p<0.05) whereas acetic acid and propionic acid concentrations were not affected (p>0.05) when pigs were fed diets with added bacillus-based probiotic. In conclusion, dietary supplementation of bacillus-based probiotic can increase growth performance and decrease fecal noxious gas content concentration.

Naturally Derived Probiotic Supplementation Effects on Physiological Properties and Manure Gas Emission of Broiler Chickens

  • Hassan, Md R.;Ryu, Kyeong-Sun
    • 농업생명과학연구
    • /
    • 제46권4호
    • /
    • pp.119-127
    • /
    • 2012
  • To investigate the influence of multi-probiotic, fermented ginseng byproduct and fermented sulfone on the performance, intestinal microflora and immunity of broiler, a five weeks trial was conducted with 340, 1-d-old $Ross{\times}Ross$ broiler. All broilers were divided into five different groups having 68 birds in each treatment, and they were assigned as control, antibiotic avilamycin (AB), multi-probiotic (MP), fermented sulfone (FS) and fermented ginseng byproduct (FGB). Each artificial or naturally derived probiotic was inoculated 0.1% level with the basal diet, and all diets were provided to birds for five weeks. Weight gain and feed intake were measured weekly basis, and blood, spleen and feces were collectedand used for the physiological properties of broiler chickens. All performances and cholesterol profiles were not significantly differed but numerically lower level of neutral fat and LDL was found in multi-probiotics and FGB treatments respectively. The salmonella spp and E. coli numbers in the ileum were high in control in relation to those of other treatments and were significantly decreased in antibiotics treatments (p<0.05). In addition, Lactobacillus spp. showed significantly higher proliferation in MP as compared to that of others (p<0.05). Fecal ammonia and $CO_2$ gas emission was significantly decreased in MP, FGB and FS, respectively (p<0.05), but significantly increased proliferation of spleen was determined in MP group in comparison of other treatments (p<0.05). Therefore, the results indicates that multi-probiotics would be valuable feed additives to improve the salmonella, E. coli and Lactobacillus proliferation, and manure gas emission of broiler chickens, but further study related to the production of manure gas emission of MP is necessary.

Lactobacillus acidophilus와 Saccharomyces cerevisiae를 이용한 남은 음식물의 생균 사료화에 대한 공기주입의 영향 (Effect of aeration for the probiotic feed production from food wastes by Lactobacillus acidophilus and Saccharomyces cerevisiae)

  • 이경석;이기영;오창석;이대규;김영준
    • 유기물자원화
    • /
    • 제11권4호
    • /
    • pp.114-119
    • /
    • 2003
  • 본 연구는 남은 음식물의 사료화를 목적으로 Lactobacillus acidophilus와 Saccharomyces cerevisiae를 이용하여 남은 음식물을 발효시켜 고품질의 생균사료를 생산하기 위하여 실시하였다. 액상으로 충분히 마쇄시킨 남은 음식물 시료에 공기주입량을 0v.v.m 0rpm, 0.25v.v.m 100rpm, 0.5v.v.m 200rpm과 1v.v.m 500rpm으로 다르게 조절하여 $30^{\circ}C$에서 발효시킨 결과 0.5v.v.m 200rpm의 조건에서 생균수가 $4.5{\times}10^9CFU/m{\ell}$로 가장 높은 것으로 나타났다. 또한 공기주입량을 조절함으로써 최종 발효물의 pH를 조절할 수 있었고 사료로서의 기호성에 알맞고 보존성도 좋은 4-5의 pH범위를 얻을 수 있었다.

  • PDF

Lactic Acid Bacteria from Gamecock and Goat Originating from Phitsanulok, Thailand: Isolation, Identification, Technological Properties and Probiotic Potential

  • Hwanhlem, Noraphat;Salaipeth, Lakha;Charoensook, Rangsun;Kanjan, Pochanart;Maneerat, Suppasil
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.355-364
    • /
    • 2022
  • From independent swab samples of the cloaca of indigenous gamecocks (CIG), anus of healthy baby goats (AHG), and vagina of goats (VG) originating from Phitsanulok, Thailand, a total of 263 isolates of lactic acid bacteria (LAB) were collected. Only three isolates, designated C707, G502, and V202, isolated from CIG, AHG, and VG, respectively, exhibited an excellent inhibitory zone diameter against foodborne pathogenic bacteria when evaluated by agar spot test. Isolates C707 and G502 were identified as Enterococcus faecium, whereas V202 was identified as Pediococcus acidilactici, based on 16S rRNA sequence analysis. When foodborne pathogenic bacteria were co-cultured with chosen LAB in mixed BHI-MRS broth at 39℃, their growth was suppressed. These LAB were found to be capable of surviving in simulated stomach conditions. Only the isolate G502 was able to survive in the conditions of simulated intestinal juice. This research suggests that selected LAB could be used as a food/feed supplement to reduce foodborne pathogenic bacteria and improve the safety of animal-based food or feed.

Effects of different Bacillus licheniformis and Bacillus subtilis ratios on nutrient digestibility, fecal microflora, and gas emissions of growing pigs

  • Kim, Yong Ju;Cho, Sung Bo;Song, Min Ho;Lee, Sung Il;Hong, Seok Man;Yun, Won;Lee, Ji Hwan;Oh, Han Jin;Chang, Se Yeon;An, Jae Woo;Go, Young Bin;Song, Dong Cheol;Cho, Hyun Ah;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • 제64권2호
    • /
    • pp.291-301
    • /
    • 2022
  • The objective of this study was to evaluate the effects of different mixing ratios of Bacillus licheniformis and Bacillus subtilis in diets on nutrient digestibility, fecal microflora, and odor gas emissions of growing pigs. A total of four crossbred ([Landrace × Yorkshire] × Duroc) barrows with average body weight (BW) of 41.2 ± 0.7 kg were randomly allotted four diets over four periods in a 4 × 4 Latin square design. Treatments were as follows: Control (CON, basal diet), CON + 0.2% probiotic complex (L4S6, B. licheniformis and B. subtilis at a 4:6 ratio), CON + 0.2% probiotic complex (L5S5, B. licheniformis and B. subtilis at a 5:5 ratio), CON + 0.2% probiotic complex (L6S4, B. licheniformis and B. subtilis at a 6:4 ratio). Dietary probiotic supplementation showed higher crude protein (CP) digestibility values and lower Escherichia coli counts in fecal samples than the CON group (p < 0.05). There was no significant difference in NH3 or H2S emission until day 3. The positive effect of H2S and NH3 emissions was detected earlier with the L4S6 and L5S5 compared to the L6S4, which had a lower ratio of B. subtilis. Both the L4S6 and L5S5 probiotic complexes significantly decreased the fecal H2S and NH3 emission in days 4 and 6 (p < 0.05). On day 7, all probiotic complexes decreased (p < 0.05) H2S and NH3 emissions than the CON group. Our results agreed that the dietary supplementation of Bacillus licheniformis and Bacillus subtilis complexes in growing pigs can significantly improve CP digestibility and reduce fecal E. coli counts, NH3 and H2S emissions. Notably, the higher mixing ratio of Bacillus subtilis in probiotic supplementation is more effective in reducing the odor of manure.

Complete genome sequence of Paenibacillus konkukensis sp. nov. SK3146 as a potential probiotic strain

  • Jung, Hae-In;Park, Sungkwon;Niu, Kai-Min;Lee, Sang-Won;Kothari, Damini;Yi, Kwon Jung;Kim, Soo-Ki
    • Journal of Animal Science and Technology
    • /
    • 제63권3호
    • /
    • pp.666-670
    • /
    • 2021
  • Paenibacillus konkukensis sp. nov., SK3146 is a novel strain isolated from a pig feed. Here, we present complete genome sequence of SK3146. The genome consists of a single circular genome measuring 7,968,964 bp in size with an average guanine + cytosine (G+C) content of 53.4%. Genomic annotation revealed that the strain encodes 151 proteins related to hydrolases (EC3), which was higher than those in Bacillus subtilis and Escherichia coli. Diverse kinds of hydrolases including galactosidase, glucosidase, cellulase, lipase, xylanase, and protease were found in the genome of SK3146, coupled with one bacteriocin encoding gene. The complete genome sequence of P. konkukensis SK3146 indicates the immense probiotic potential of the strain with nutrient digestibility and antimicrobial activity functions.

복합생균제의 첨가급여가 비육돈의 생산성과 육질특성에 미치는 영향 (Effect of Probiotic Supplemention on the Performance and Quality Characteristics of Meat from Finishing Pigs)

  • 김희윤;김영직;박구부
    • 한국축산식품학회지
    • /
    • 제27권1호
    • /
    • pp.53-59
    • /
    • 2007
  • 본 시험은 비육돈에 대한 복합 생균제의 사료적 가치를 평가하기 위하여 시판 생균제를(0, 0.2, 0.5 및 1.0%) 삼원 교잡종($Landrace{\times}Yorkshire{\times}Duroc$, 평균체중 $55.3{\pm}1.5 kg$) 비육돈 48두를 공시하여 58일간 급여하여 증체량, 사료섭취량, 도체등급과 도체율, 육의 pH, 육색, 지방색 및 지방산 함량을 분석하였다. 일당 증체량은 0.2%구가 0.95 kg으로서 대조구(0.85 kg)에 비하여 증가(p<0.05)하였으며, 일당 사료섭취량은 대조구를 포함한 모든 처리구에서 2.79-2.84 kg로서 차이는 없었다. 사료요구율은 0.2%구가 2.96으로서 대조구(3.28)에 비하여 개선효과(p<0.05)가 뚜렷하였다. 도체중량과 도체율 및 등지방 두께는 대조구를 포함한 모든 처리구에서 차이는 없었으며 A등급 출현율은 0.2%구가 46.67%로서 타구에 비하여 향상되었다. 육의 수분, 조단백질 및 조회분 함량은 대조구를 포함한 모든 처리구에서 차이는 없었지만 조지방 함량은 0.2%구가 다른 처리구에 비하여 낮은 경향이었다. 육의 pH는 대조구를 포함한 모든 처리구에서 차이는 없었다. 생균제를 첨가함으로서 육색의 명도($L^*$)값은 낮았으며, 적색도($a^*$) 값은 높게 나타났다. 포화지방산 함량은 0.2%구와 0.5%구에서 낮았으며, 불포화지방산 함량은 생균제를 급여한 모든 처리구에서 높게 나타났다(p<0.05).

Screening of Indigenous Strains of Lactic Acid Bacteria for Development of a Probiotic for Poultry

  • Karimi Torshizi, M.A.;Rahimi, Sh.;Mojgani, N.;Esmaeilkhanian, S.;Grimes, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권10호
    • /
    • pp.1495-1500
    • /
    • 2008
  • In an attempt to develop a probiotic formulation for poultry feed, a number of lactic acid bacteria (LAB) were isolated from chicken intestinal specimens and a series of in vitro experiments were performed to evaluate their efficacy as a potential probiotic candidate. A total of 650 LAB strains were isolated and screened for their antagonistic potential against each other. Among all the isolates only three isolates (TMU121, 094 and 457) demonstrated a wide spectrum of inhibition and were thus selected for detailed investigations. All three selected isolates were able to inhibit the growth of E. coli and Salmonella species, although to variable extent. The nature of the inhibitory substance produced by the isolates TMU121 and 094 appeared to be associated with bacteriocin, as their activity was completely lost after treatment with proteolytic enzymes, while pH neutralization and catalase enzyme had no effect on the residual activity. In contrast, isolate TMU457 was able to resist the effect of proteolytic enzymes while pH neutralization completely destroyed its activity. Attempts were made to study the acid, bile tolerance and cell surface hydrophobicity of these isolates. TMU121 showed high bile salt tolerance (0.3%) and high cell surface hydrophobicity compared to the other two strains studied, while TMU094 appeared the most pH resistant strain. Based on these results, the three selected LAB isolates were considered as potential ingredients for a chicken probiotic feed formulation and were identified to species level based on their carbohydrate fermentation pattern by using API 50CH test kits. The three strains were identified as Lactobacillus fermentum TMU121, Lactobacillus rhamnosus TMU094, and Pediococcus pentosaceous TMU457.

Complete genome sequence of Limosilactobacillus fermentum JNU532 as a probiotic candidate for the functional food and feed supplements

  • Bogun Kim;Ziayo Meng;Xiaoyue Xu;Seungwoo Baek;Duleepa Pathiraja;In-Geol Choi;Sejong Oh
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.271-274
    • /
    • 2023
  • Lactic acid bacteria (LAB) have been reported to possess various beneficial properties and are commonly used as probiotics. LAB play a crucial role in milk fermentation, industrial lactic acid fermentation, and health and medicine. Limosilactobacillus fermentum isolated from fermented dairy and food products is considered as 'Generally Recognized as Safe' by FDA. Limosilactobacillus fermentum plays an important role in modulation of the intestinal microbiota, enhancing the host immune system and improving feed digestibility. We isolated a probiotic candidate that was identified and named Limosilactobacillus fermentum JNU532. In a previous report, cell-free culture of L. fermentum JNU532 exhibited anti-melanogenic and antioxidant activities. In this study, we present the complete genome assembly of the bacterial strain JNU532. The final genome consists of one circular chromosome (2,077,416 base pairs) with a guanine + cytosine (GC) ratio of 51.5%.

잠재적 사료첨가제로서 Pediococcus acidilactici SRCM102607의 생균제 특성 및 면역활성 효과 (Probiotic Properties and Immunomodulator Evaluation of the Potential Feed Additive Pediococcus acidilactici SRCM102607)

  • 신수진;하광수;정수지;류명선;김진원;양희종;곽미선;성문희;정도연
    • 생명과학회지
    • /
    • 제30권10호
    • /
    • pp.896-904
    • /
    • 2020
  • 본 연구에서는 가축의 면역증강용 생균제 개발을 위하여 Pediococcus acidilactici SRCM102607의 프로바이오틱스 특성 및 면역활성을 조사하였다. 전통발효식품으로부터 유산균을 분리 하였고, 분리 유산균을 대상으로 가축유해 미생물 5종에 대한 항균활성을 측정하였다. 우수한 결과를 나타내는 5종의 유산균을 1차 선별하였고, 이를 대상으로 생균제 소재 활용 가능성을 확인하기 위해 용혈성, 담즙산염 분해효소, 항산화 활성 분석을 실시하여 최종적으로 SRCM102607을 선별하였으며, 16S rRNA 유전자 염기서열 분석을 통해 Pediococcus acidilactici SRCM102607로 명명하였다. SRCM102607의 pH 2 조건에서 내산성은 1.54×105 CFU/ml의 생균수를 보였으며, 0.5% 이상의 oxgall이 포함된 조건에서도 105 CFU/ml 이상의 높은 생균수를 나타내었다. 또한, 선발균주의 산업적으로 활용할 수 있는 가능성을 검토하기 위해 항생제 내성 및 분해 효소능을 측정하였고 다양한 항생제에 대한 내성과 유해 효소를 생성하지 않음을 확인하였고, 최종적으로 면역 증강제로서의 활용 여부를 확인하기 위해 TNF-α 생성능(171.86±4.00 ng/ml)을 확인하였다. 본 연구를 기반으로 SRCM102607은 가축 생균제 소재로 활용 가능성과 면역활성이 뛰어난 유산균으로 생균제 산업에서의 잠재적 적용 가능성을 확인하였다.