• Title/Summary/Keyword: probability of mutation

Search Result 61, Processing Time 0.018 seconds

ON THE REPRESENTATION OF PROBABILITY VECTOR WITH SPECIAL DIFFUSION OPERATOR USING THE MUTATION AND GENE CONVERSION RATE

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • We will deal with an n locus model in which mutation and gene conversion are taken into consideration. Also random partitions of the number n determined by chromosomes with n loci should be investigated. The diffusion process describes the time evolution of distributions of the random partitions. In this paper, we find the probability of distribution of the diffusion process with special diffusion operator $L_1$ and we show that the average probability of genes at different loci on one chromosome can be described by the rate of gene frequency of mutation and gene conversion.

VLSI Implementation of Adaptive mutation rate Genetic Algorithm Processor (자가적응 유전자 알고리즘 프로세서의 VLSI 구현)

  • 허인수;이주환;조민석;정덕진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.157-160
    • /
    • 2001
  • This paper has been studied a Adaptive Mutation rate Genetic Algorithm Processor. Genetic Algorithm(GA) has some control parameters such as the probability of bit mutation or the probability of crossover. These value give a priori by the designer There exists a wide variety of values for for control parameters and it is difficult to find the best choice of these values in order to optimize the behavior of a particular GA. We proposed a Adaptive mutation rate GA within a steady-state genetic algorithm in order to provide a self-adapting mutation mechanism. In this paper, the proposed a adaptive mutation rate GAP is implemented on the FPGA board with a APEX EP20K600EBC652-3 devices. The proposed a adaptive mutation rate GAP increased the speed of finding optimal solution by about 10%, and increased probability of finding the optimal solution more than the conventional GAP

  • PDF

ON THE PROBABILITY OF GENOTYPES IN POPULATION GENETICS

  • Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • A partition X describes that there exists αi kinds of alleles occurring i loci for each i. All genes have multiple alleles, i.e., they exist in more than two allelic forms, although any one diploid organism can carry no more than two alleles. The number of possible genotypes in a multiple allel series depends on the number of alleles. We will deal with an n locus model in which mutation and gene conversion are taken into consideration. In this paper, we firstly find the probability pn(x) of genotype $$p_{n+1}(x)=p_n(x){\sum\limits_{k=1}^{r}}q_{kx}p_n(k)$$ with the rates of mutation and gene conversion. Also we find the probability of genotype without the rates of mutation and gene conversion and we apply this probability to two examples.

Evolutionary Programming of Applying Estimated Scale Parameters of the Cauchy Distribution to the Mutation Operation (코시 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용한 진화 프로그래밍)

  • Lee, Chang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.9
    • /
    • pp.694-705
    • /
    • 2010
  • The mutation operation is the main operation in the evolutionary programming which has been widely used for the optimization of real valued function. In general, the mutation operation utilizes both a probability distribution and its parameter to change values of variables, and the parameter itself is subject to its own mutation operation which requires other parameters. However, since the optimal values of the parameters entirely depend on a given problem, it is rather hard to find an optimal combination of values of parameters when there are many parameters in a problem. To solve this shortcoming at least partly, if not entirely, in this paper, we propose a new mutation operation in which the parameter for the variable mutation is theoretically estimated from the self-adaptive perspective. Since the proposed algorithm estimates the scale parameter of the Cauchy probability distribution for the mutation operation, it has an advantage in that it does not require another mutation operation for the scale parameter. The proposed algorithm was tested against the benchmarking problems. It turned out that, although the relative superiority of the proposed algorithm from the optimal value perspective depended on benchmarking problems, the proposed algorithm outperformed for all benchmarking problems from the perspective of the computational time.

Rank-based Control of Mutation Probability for Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.146-151
    • /
    • 2010
  • This paper proposes a rank-based control method of mutation probability for improving the performances of genetic algorithms (GAs). In order to improve the performances of GAs, GAs should not fall into premature convergence phenomena and should also be able to easily get out of the phenomena when GAs fall into the phenomena without destroying good individuals. For this, it is important to keep diversity of individuals and to keep good individuals. If a method for keeping diversity, however, is not elaborately devised, then good individuals are also destroyed. We should devise a method that keeps diversity of individuals and also keeps good individuals at the same time. To achieve these two objectives, we introduce a rank-based control method of mutation probability in this paper. We set high mutation probabilities to lowly ranked individuals not to fall into premature convergence phenomena by keeping diversity and low mutation probabilities to highly ranked individuals not to destroy good individuals. We experimented our method with typical four function optimization problems in order to measure the performances of our method. It was found from extensive experiments that the proposed rank-based control method could accelerate the GAs considerably.

Adaptive Control of Strong Mutation Rate and Probability for Queen-bee Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • This paper introduces an adaptive control method of strong mutation rate and probability for queen-bee genetic algorithms. Although the queen-bee genetic algorithms have shown good performances, it had a critical problem that the strong mutation rate and probability should be selected by a trial and error method empirically. In order to solve this problem, we employed the measure of convergence and used it as a control parameter of those. Experimental results with four function optimization problems showed that our method was similar to or sometimes superior to the best result of empirical selections. This indicates that our method is very useful to practical optimization problems because it does not need time consuming trials.

Analysis of the Levy Mutation Operations in the Evolutionary prograamming using Mean Square Displacement and distinctness (평균변화율 및 유일성을 통한 진화 프로그래밍에서 레비 돌연변이 연산 분석)

  • Lee, Chang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.11
    • /
    • pp.833-841
    • /
    • 2001
  • Abstract In this work, we analyze the Levy mutation operations based on the Levy probability distribution in the evolutionary programming via the mean square displacement and the distinctness. The Levy probability distribution is characterized by an infinite second moment and has been widely studied in conjunction with the fractals. The Levy mutation operators not only generate small varied offspring, but are more likely to generate large varied offspring than the conventional mutation operators. Based on this fact, we prove mathematically, via the mean square displacement and the distinctness, that the Levy mutation operations can explore and exploit a search space more effectively. As a result, one can get better performance with the Levy mutation than the conventional Gaussian mutation for the multi-valued functional optimization problems.

  • PDF

On Sweeping Operators for Reducing Premature Convergence of Genetic Algorithms (유전 알고리즘의 조기수렴 저감을 위한 연산자 소인방법 연구)

  • Lee, Hong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1210-1218
    • /
    • 2011
  • GA (Genetic Algorithms) are efficient for searching for global optima but may have some problems such as premature convergence, convergence to local extremum and divergence. These phenomena are related to the evolutionary operators. As population diversity converges to low value, the search ability of a GA decreases and premature convergence or converging to local extremum may occur but population diversity converges to high value, then genetic algorithm may diverge. To guarantee that genetic algorithms converge to the global optima, the genetic operators should be chosen properly. In this paper, we analyze the effects of the selection operator, crossover operator, and mutation operator on convergence properties, and propose the sweeping method of mutation probability and elitist propagation rate to maintain the diversity of the GA's population for getting out of the premature convergence. Results of simulation studies verify the feasibility of using these sweeping operators to avoid premature convergence and convergence to local extrema.

Application of multi-objective genetic algorithm for waste load allocation in a river basin (오염부하량 할당에 있어서 다목적 유전알고리즘의 적용 방법에 관한 연구)

  • Cho, Jae-Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.713-724
    • /
    • 2013
  • In terms of waste load allocation, inequality of waste load discharge must be considered as well as economic aspects such as minimization of waste load abatement. The inequality of waste load discharge between areas was calculated with Gini coefficient and was included as one of the objective functions of the multi-objective waste load allocation. In the past, multi-objective functions were usually weighted and then transformed into a single objective optimization problem. Recently, however, due to the difficulties of applying weighting factors, multi-objective genetic algorithms (GA) that require only one execution for optimization is being developed. This study analyzes multi-objective waste load allocation using NSGA-II-aJG that applies Pareto-dominance theory and it's adaptation of jumping gene. A sensitivity analysis was conducted for the parameters that have significant influence on the solution of multi-objective GA such as population size, crossover probability, mutation probability, length of chromosome, jumping gene probability. Among the five aforementioned parameters, mutation probability turned out to be the most sensitive parameter towards the objective function of minimization of waste load abatement. Spacing and maximum spread are indexes that show the distribution and range of optimum solution, and these two values were the optimum or near optimal values for the selected parameter values to minimize waste load abatement.

Optimal Design of Water Distribution Networks using the Genetic Algorithms: (I) -Cost optimization- (Genetic Algorithm을 이용한 상수관망의 최적설계: (I) -비용 최적화를 중심으로-)

  • Shin, Hyun-Gon;Park, Hee-Kyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.70-80
    • /
    • 1998
  • Many algorithms to find a minimum cost design of water distribution network (WDN) have been developed during the last decades. Most of them have tried to optimize cost only while satisfying other constraining conditions. For this, a certain degree of simplification is required in their calculation process which inevitably limits the real application of the algorithms, especially, to large networks. In this paper, an optimum design method using the Genetic Algorithms (GA) is developed which is designed to increase the applicability, especially for the real world large WDN. The increased to applicability is due to the inherent characteristics of GA consisting of selection, reproduction, crossover and mutation. Just for illustration, the GA method is applied to find an optimal solution of the New York City water supply tunnel. For the calculation, the parameter of population size and generation number is fixed to 100 and the probability of crossover is 0.7, the probability of mutation is 0.01. The yielded optimal design is found to be superior to the least cost design obtained from the Linear Program method by $4.276 million.

  • PDF